NMOS 6510
Unintended
Opcodes

(w) 2013-2019 groepaz/solution, all rights reversed

http://hitmen.eu/

Contents

PrElCE. ..o e e —eeea et ———————aaeeeeeeea———————————aeeettu———aaaaeaenaaaaaas 1
Scope Of thiS DIOCUIMENL.ccuvvvieieeieeieeeeiieie e ettt e et e e eeetee e e eeteeeeeeeaaeeeeeeaeeeeeeeaeeeeeeraneeeeeesneeeeannes 1
TNEENAEA AUAIEIICE. ... oo e aaeeeeraaeeenananns 1
| B TeS) 41T SRRSO 1
WHAE YOU ZOL. .ottt ettt e b e st e e bt e s at e e bt e e seeebeesabeenbbeeeanbeeeeanneeanans I
Naming CONVENTIONS.c.uvievieriierireriieeteertteeoteestteeseessaesseesseeasseesssessseesseessseesssessssesssssseeesssseesssns I

AdAreSS-MOdE ADDIEVIALIONS. ...ceveeeeneeeeeee ettt e e e et e e e e e e e e e eeee e aaaeeeeeeenaeeeeneserenaaeerenaaaee 11
A F1 TS 1010 01 Lor RO 1
PrOCESSOT FLAGS. ...ttt e aeaeaaaeeseeeeanaaaeeeenanans I\

UninteNded OPCOAES.uvveiiieieeieeeeiee ettt eee e e et e e e e e e e eeaeeeeeeeaaeeeeeeaaaaeeeeeeeeeeeeeeeeeannnnnees 1
OVEIVIEW. .ot e e e e e e e e e e e e aaee e e e e e e e aaaeeeee e e aa e aaaeeeeeeaaeanaaaaeeeeesaeaaneaaaaaaaeeneannns 1
DS ettt ettt ettt et ettt e et e ettt e et ee e aa e e e bteeeat e e abe e e et eeeanteeenteeenteeenbeeennneeeeeaanns 3

Combinations of two operations with the same addressing Mode..........ooveeeeumeeeeeeeeeeeeeeeeaeeennn. 3
Combinations of an immediate and an implied command............c.cceeveerveriiienieerieenie e 3
CombINALIONS OF ST A S T X ST Y oottt eeeaeeeeaaaaee 4
Combinations of STA/TXS and LDA/TSXuviiiioieieeeeeeee e e e 4
INO BEEECT . ettt e aaaaeeae e e e e —————————————_ 4
LLOCKUD. 1.ttt ettt ettt ettt et e e et e st e esteeesbeesbeesabe e beeesseenseeesbeenbeeenbe e seeenbeeneeeenbeeeenbaeennns 4
SEADLE OPCOAES. .. eeeeasaeaeaaaaaaaaseeeesaraeseeeernnnaaeeas 5
SLIO (ASQO). ettt et e e e e e e e e e e e e e e aae e e e eetaeeeeeaaeeeeeetasaeeeeeeeeeeeeeaeanannaraees S
Example: Multibyte left shift and load leftmost byte.........cccveeeuiieeiiieeciiieeieeeee e, 6
RILA (RIIN ...ttt eete e e et e et e eeeaae e e e eeaaae e e e e aaeeeeeetaeeeeeesaaeeeeeeeeeeeeennnnsnnnnnes 7
Example: scroll over a background [aYer..........ccoveieciiieiiieeiiiecie et 8
Example: multiply by 3. 5, 7. 10 ..uiiiiiieiieeieeeece ettt et e 8
SRE (LSE) ..ttt ettt e et e e et e e e et a e e e s enaaeeeseenaaeeesesnaeeeesanseeessennaeeeas 9
Example: 8bit 1-0f-8 COUNLET.......ceevuieriieiieeieeiieeie ettt ettt e ee e eeeaeeeeneneeeenes 10
RRA (RRD).c. ittt et e e e e et e e e e et e e e s s enaaeeesenaaaeessennasaaneeeeeeens 11
Example: 101S€ LESR.....ccciiiiiiiiiie ettt et et e et e e et e e eabeesnaeeennnns 12
SAX CAXS, AA XD ittt et e e et e e e et e e e e et e e e et e e e et e e e eaaaaeeeaaaaas 13
Example: store values with mMask..........c..ccceeriiiiiiiiiiieiie it 14
Example: update Sprite POINLELS......cccueeiiiieiiieeiiieectee ettt e e e e e e e eaanaee e 14

) 57 GO 15
Example: load A and X with SamMe VAIUE..........cccevieiiiiiiiiiieciie et 16
DCP (DOt et e e e et e e e et e e e et e e e e e e aaaeeeeeaaeeeeeeaaeeeeeeeeeeeeeeeeeannnns 17
Example: decrementing 100D COUNLET........cccureeriieeriieeeiieeeieeeieeeeteeeereeeseveeesereeeeaee e e nenns 18
Example: decrementing 16Dit COUNLET.cc.eevvieriierieeiieeieetieeteeieeeve et e ereeseeeereeseeseneees 18
ISC (ISBLIINS) ..ttt e et e e e et e e e et e e e e s enaaeeessannaeeeeeeeeeeseseannnnes 19
Example: incrementing 100D COUNTET.c.eevvieriierieeriieeieeieeeieeieeeveeireeeenreeeeareeeennseeenns 20
Example: increment indexed and [oad value............cccueeeveiieiiiiiciiieciee e, 20
ANC (ANC2, ANALANDB). oot e e e e e e e e e e e e e e e e eeesesaannnns 21
Example: implicit enforcement of carry flag state............occeeeiiieniiiiiiniiiiieieeeee e 22
Example: remembering @ Dil.........c.eerveeiiieriieiiienieeiienieeieeseeeteesieeereeseaeesnaeeessnseesssnseeenns 22
PN B R NS 2 TR 23
Example: right shift and mask.............cccoeeviieriiioiiiniieeee e 23
Example: fetch 2 bits from @ DYLE.......ccocuiieeiiiiiiiieiciie et 24
Example: add offset depending on LSB.........c.cccieriiiiiieiiieiieeieeieeete et e 24
ARR ..ot e e e e et e e e e — ittt e reeeeaaeeeeaaaanaaa 25
Example: rotating 16 Dit VAIUES.......cc.eevuiieiieriieeieeiiecieeeite ettt ebeeseaeeraeeenee s 26

Example: load register depending On CAITY........coovteruierieeriieniieiieeieeniee et eieeeeeeseeeeeeeee s 27

Contents

Example: shift zeros or ones into acCUMUIALOT..........ccveevieriieriieiieeie et e eiieeeeieeeeeiree e 27

SBX (AXS, SAX, XIMA) .ottt eee e e ettt e e e et e e s e eaae e e s eaaaeesseaaeee s e aaaaaaaaeees 28
Example: decrement X by more than 1..........cccoeevieeiiieiiieiiieniecieeceeeieeeee e 29
Example: decrement NibDIES.eeevuiiieiuiieeiieeciee ettt e e e e e aaaea e 30
Example: apply a mask t0 an iNAEX.........cccueeruiiiiieniiieiieniie et sree e 31

SBC (USBC, USB) ...ttt ettt e e e e eaaae e s sttt eeseenaaeesee s nnssassaaaneeeeeeens 32
LAS (LLAR) oottt ettt e e e e e e e e et e e e et e e e e eeaae e e e e e e aeeeeeeeeeeannnaanaes 33
Example: cycle an index within BOUNdS...........cccuveeeiieeiiieeiieeeeeecee e 34

NOP (INPO, UNP)...cc ittt e et e e et e e e et e e e eeaaeeeeeeaaeeeeeeasaaaeeeeaaeeaeeaeens 35
NOP (DOP, SKB)...oeeieeeeeiieeeeeeee ettt e et e e et eesenae e e s seaaeeesseaaeeessnnsssessensassseeeees 35
NOP (TOP, SKW) ..ottt e e et e et e e e etae e e e eeaaaeeeeeeaaeeeeeeennesassaasaereeeeeens 36
Example: acknowledge TRQ.......cocuiiiiiiiiiiieie ettt st e e s 37

JAM (KIL, HLT, CIM, CRP)....utiiiiiieie et eeeae e e et e e eeaaee e e e e e e e e e e ennnnnns 38
EXample: StOP EXECULION. ...eeuviieeiiieeeiieeeiieeeteeesteeeseteeesereeessseeessaeessseessaeeeessssssesesessssseeeeens 38
UNSEADIE OPCOUCS. ...ccevveieieitiiee ettt eeae e e e et e e e eeataeeeeetaeeeeeetaeeeeenaaeeeeeeeennsssssssenneens 39
'unstable address high DYLE' GrOUD.......covviiiiiiiiiiiiiieeieeeeeeeeeeeee ettt e e e e eeeeeaas 39
SHA (AXA, AHX, TEA) . .ottt e e e e e eeaaeeeeeeeean 41

|25 €211010) (SR Ta 0 G oL USSP 42
EXample: SAX (ZD). Veeoveeoierieeieeiieecieeriee et esieesteestteebeesseesseesseessseesaessseesseessseeseesnsens 42

SHX (A1, SXA, XAS, TEX ..ottt ettt eeete e et e et eeeaaeeeseenaaeeseesssnnnnnes 43
EXample: STX @DS, V.uuiiioiieoiieiieeiieiieeieeeiie et eete et eseeeteeteesbeessaessseeseessseesssseesnnssaeenns 44

SHY (ALLL SYA, SAY, TEY)ittt e e e e e e aanaeeeeas 45
EXample: STY aDS, Xuviiouieiiieiieiieeiieiieeiteeie et este et eseeebe e teeebeessaeenseessseeesnnsaeesnnseeenns 46

TAS (KAS, SHS) ..ottt et e e et e e e et e e s seaaaeeeseenaaeeseanaeeeeeeeeas 47
Example: SAX abs, Y With SP=A & Xo.oooiiiiieiieeieeeieeteeete ettt e 48

"MAZIC CONSLANLE GTOUD. .. et eeeeesaaneeeeeesennannnnes 49
ANE (KAA,LAXM) oottt e e ettt e e e e e e et e e e e eeaaee e e ee et anraaeeaaaaaeeas 50

2521 0010) (o o] (<7 | s NSRS 51
Example: A =X AND iMMEAIALE........cccveerveerireeiieriieeiteeiieeieerieeeaeesteeeaeesseessaeeessseeenns 51
Example: read the 'magic CONSIANT'.........cceiiiiiiiiiiiiciee et 51

LAX AHmm (ATX, LXA, OALLANX) oottt eee e e e e e e e e e e e e 52
Example: clear A and X......ccouvioiiieiiieecieeee ettt e e e e e e aaaaaea s 54
Example: load A and X with samMe ValUC...........cccueeriiieiieriienieeieeee e 54
Example: read the 'magic CONSIANT'.........cceiiiiiiiiiie et 54
Unintended addressing MOAES.........ccveeuieeiieriieiiieitieeteeteeete et esieeeteessaeesseesseeesseesssesssaesseessssseesnnnns 55
AbSOIUtE Y TNAEXEA (RIMoW) e e e e et e e e e e e e e e e e e e e aaeens 55
Zeropage X Indexed INdirect (R=-IM=W)......ooiiiiiiiiiiiiieiee ettt eetae e e e e 56
Zeropage Indirect Y INdeXed (RoIM-W) oo e e e e e e e e 57
Unintended decimal MOAE.........coouviiiiiiiiieeeeieiee et e et e e e et e e e eetaeeeeeeaaaaeeeeeeeeas 58
Decimal mode 1N @ NULSHELL.coeeeeeeeee et e e e e e e e e e e e e e e eaeeeeaeerenaaeenens 59
JRANIZ:1 1o 1 21O B RSP RRRRT 60
ATTECtEd INSIIUCTIONS. ... ieieieiiiiieeee ettt ettt e e e e e e ettt e e e e e e e sesaataeeeeeeessssssrasaeeeseeseeeesaaees 61
ADKC ..o e e e e e e ea——— e e e —— e e e e e ——————————aaaaans 61
Example: convert a hex digit t0 ASCIL........cocuieiuiiiiiiiieiie ettt 63
Example: convert a hex digit t0 BCD.......c..cccuiiiiiiiiiiiiieeiieiiecie et eiaee e 63
Example: Distinguish NMOS 6502 from CMOS 65C02........cueeevireeiiieeiieeeie e e 63

SBC (USBQ). .ttt ettt ettt e et e e e e et e e e eeaaeeeeeeaaeeeeeenaaeeesennaeeeeeensassaaneeeeeeeens 64
ARR ..ot e e e e et e e e e — ittt e reeeeaaeeeeaaaanaaa 66
ISC (ISBLIINS). .ot ettt e e et e e e e et e e e et e e e e eaaeeeeeeaaeeeeeeeeeeeeennnnnnes 67

Contents

Unintended bug@s and QUITKS..........ccveiiiieiiieeiieiee ettt ettt ettt et e eaeesseeebeesseesnsaesnsseeesnsneeeennns 69
Zeropage addressing MOAES & DATE WIADS. . .uuuuuuuuunneeneeeeeeeeeeeeeee e eensnnnennnennnenennnnnns 69
Indirect addressing MOde & PAZE WIAPS......eeevierueerrieriieeieeiieereenteesteeseessreeseessseeseessnesnsaesnsseess 69

J N 010153 416 1. SO PSPPSR 70
Opcode naming in different ASSEMDIETS.........c.cecviieiierieriieiieeie ettt e ebeeseaeeeneees 70
Combined EXAMPIES.......eeeiuiiieiuiieeiiieeiieeeiteeeieeeeteeesiveeeseseeessaeeeesseesaseessseessaeesnsaeessseaeesssssseeeens 71

Negating 8 LODIt MUMDET.........c.cooiiiiieiiieeieeieeete ettt et e e ebeeseaeebeesteeesbeessaeesseessaessseenseesnnsens 71
A SINAIT AAATEION . .. eeeeeeeeee e ettt e e e e e e e e e et e eeeeeeeeeeee e aaaaeeeeeeeeeaenaaeseeeeereeanaseenaaaaes 71
Multiply 8bit * 2 A n With TODIt TESUIL........eeiiiiiiiiieeiiiie e 72
6 SPITLES OVET FLL. ... e e e e e eanneneeaees 73
Blackmail FLL.......ccouviiiiiiiiiiieieiiie e e ettt e et e e et e e e eeaaaeeeeeeeeeeeeeeeennnnnnes 75
RETEIEIICES. ..ot et e et e aaee e e e e e e e raaaeeeeeeananans 80
Greets ANd TRANKS.........oooiviiiiiiiiiee ettt e e e e eet e e e et e e e eetaeeeeeeaaeeeeeaaeeeeeeareeeeeenneeas 81
WVANTEA. ..ottt ettt e e e e e e ettt e e e e e e e s saababeeeeeesessasasabaseeeesaseaasaeeeeeeeererrrraaaes 82

Preface

'Back in the days' so called 'illegal' opcodes were researched independently by different parties, and
detail knowledge about them was considered 'black magic' for many conventional programmers.
They first appeared in the context of copy protection schemes, so keeping the knowledge secret was
crucial.

When some time later some of these opcodes were documented by various book authors and
magazines, a lot of misinformation was spread and a number of weird myths were born. It took
another few years until some brave souls started to systematically investigate each and every
opcode, and until the mid 90s that Wolfgang Lorenz came up with his test suite that finally
contained elaborated test programs for them.

Still, a few opcodes were considered witchcraft for a while (the so called 'unstable' ones), until other
people finally de-capped an actual CPU and solved the remaining riddles.

This document tries to present the current state of the art in a readable form, and is in large parts the
result of pasting existing documents together and editing them (see References)

24/12/19 groepaz/solution

Scope of this Document

To make things simple, the rest of this document refers specifically to the MOS6510 (and the
CSG8500) in the Commodore 64, and to the CSG8502 found in the Commodore 128.

However, most of the document applies to MOS6502 as well. Also MOS Technology licensed
Rockwell and Synertek to second source the 6502 microprocessor and support components,
meaning they used the same masks for manufacturing, so their chips should behave (exactly) the
same. The 6502C “Sandy” found in Atari 8-bit computers also seems to work the same.

Some of the 'unstable' opcodes are known to work slightly different on 6502 equipped machines,
but that is just the result of the RDY line not being used in them.

This document does not apply to the 65C02, 652SC02, 65CE02, 65816 etc. (These are all not 100%
6502 compatible)

Whether related CPUs like the 7501/8501 used in the CBM264 series behaves the same has not
been tested (but is likely — feedback welcomed).

Intended Audience

This document is not for beginners (such as yourself) *. The reader should be familiar with 6502
assembly, and in particular is expected to know how the regular opcodes and CPU flags work
exactly. For those that do not feel confident enough, having a reference to the regular opcodes, flags
behaviour and things like decimal mode at hand is probably highly recommended.

*) Wording change suggested by Poopmaster

License
This documentation is free as in free beer. All rights reversed.

If using the information contained here results in ultra realistic smoke effects and/or loss of mental
health, it is entirely your fault. You have been warned.

What you get
* Reference chart of all 'illegal' opcodes
* Cycle by cycle breakdown of the 'illegal' addressing modes
* For every 'illegal' opcode:
o Formal description of each opcode, including flags etc.
o @General description of operation and eventual quirks
o equivalent 'legal' code

o All documented behaviour backed up by test code. The referenced test code can be
found in the VICE test-programs repository at

http://vice-emu.svn.sourceforge.net/viewve/vice-emu/testprogs/

o examples for real world usage, if available
* Some hints on using decimal mode in (not only) unintended ways

* A short description of all other unintended bugs and quirks of the CPU

=11 -

http://vice-emu.svn.sourceforge.net/viewvc/vice-emu/testprogs/

Naming Conventions

A Accumulator

X X-register

Y Y-register

SP Stack-pointer

PC Program Counter

NV-BDIZC |Flags in the status-register

{imm} An immediate value

{addr} Effective address given in the opcode (including indexing)
{H+1} High byte of the address given in the opcode, plus 1
{CONST} |'Magic' chip and/or temperature dependent constant value
& Binary AND

| Binary OR

" Binary XOR

+ Integer Addition

- Integer Subtraction

* Integer Multiplication (powers of two work like a bitshift)
/ Integer Division (powers of two work like a bitshift)

In the various tables colours GREEN, YELLOW and RED are used in the following way:

GREEN indicates all completely stable opcodes, which can be used without special precautions,
YELLOW marks partially unstable opcodes which need some special care and RED is reserved for
the remaining few which are highly unstable and can only be used with severe restrictions.

Address-Mode Abbreviations

AA Absolute Address

AAH Absolute Address High
AAL Absolute Address Low
DO Direct Offset
Mnemonics

This document lists all previously used mnemonics for each opcode in the headlines of their
description, and then one variant which the author was most familiar with is used throughout the
rest of the text. A table that shows which mnemonics are supported by some popular assemblers can

be found in the appendix.

- 10 -

Processor Flags

Standard notation is used for the processor flags:

N | Negative

V |oVerflow

- | bit5 of the status register is unused

B Break

D Decimal

I |Interrupt
Z |Zero
C |Carry

To indicate what processor flags are used and/or modified by the respective instructions this
document uses a slightly different notation than many other existing ones. In particular this will
allow to indicate directly in the tables whether an instruction depends on, modifies, or just sets a
flag.

1 | The instruction depends on this flag (takes it as INPUT) but does not change it. In this
document this applies to the decimal flag only.

o | The instruction does not depend on this flag, but does set or clear it (it is OUTPUT only).
The zero flag is a typical example for this (only branches depend on it, other instruction
would only set it)

x | The instruction depends on this flag, and does change it too. The carry flag is a typical
example for this (although not generally in all instructions).

The instruction does not depend on, nor change, this flag

-1V -

Unintended Opcodes

Overview

Opc. |imp|imm| zp | zpx |zpy|izx | izy |abs|abx| aby Function N|V|-|B|D|I|Z|C

SHA $93 $9F [{addr} = A & X & {H+1}
SHY $9C {addr} =Y & {H+1}
SHX $9E [{addr} = X & {H+1}
SP=A&X
TAS $98B
{addr} = SP & {H+1}
LAS $BB |A,X,SP = {addr} & SP e} [¢}

Opc. |imp|imm| zp | zpx|zpy|izx| izy |abs|abx| aby Function N|V|-|B|D|I|Z|C

Opc. | - - - - - - - - - - - - Function N|V|-|B|D|I|Z|C

Types

Combinations of two operations with the same addressing mode

Opcode Function

SLO {addr} ASL {addr}

+

ORA {addr}

RLA {addr} |ROL {addr} + AND {addr}

SRE {addr} LSR {addr} + EOR {addr}

RRA {addr} |ROR {addr} + ADC {addr}

SAX {addr} |STA {addr} + STX {addr} store A & X into {addr}

LAX {addr} |[LDA {addr} + LDX {addr}

DCP {addr} |DEC {addr} + CMP {addr}

ISC {addr} |[INC {addr} + SBC {addr}

Combinations of an immediate and an implied command

Opcode Function

ANE #{imm} |TXA + AND #{imm}

LAX #{imm} LDA #{imm} + TAX

ANC #{imm} AND #{imm} + (ASL)

ANC #{imm} /AND #{imm} + (ROL)

ALR #{imm} AND #{imm} + LSR

ARR #{imm} AND #{imm} + ROR

SBX #{imm} CMP #{imm} + DEX put A & X minus #{imm} into X

SBC #{imm} SBC #{imm} + NOP

Combinations of STA/STX/STY

Opcode

Function

SHA {addr}

stores A & X & H into {addr}

SHX {addr}

stores X & H into {addr}

SHY {addr}

stores Y & H into {addr}

Combinations of STA/TXS and LDA/TSX

Opcode Function
TAS {addr} |stores A & X into SP and A & X & H into {addr}
LAS {addr} |stores {addr} & SP into A, X and SP
No effect

Bit configuration does not allow any operation on these ones:

Opcode Function
NOP no effect
NOP #{imm} Fetches #{imm} but has no effects.
NOP {addr} |[Fetches {addr} but has no effects.
Lock-up
Opcode Function
JAM Halt the CPU. The buses will be set to $FF.

Stable Opcodes

SLO (ASO)

Type: Combination of two operations with the same addressing mode (Sub-instructions: ASL,
ORA)

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C
$07 |SLO zp {addr} = {addr} * 2 A = A or {addr} 2 5 [o) o|lo
$17 |SLO zp, x 2 6 0 oo
$03 |SLO (zp, Xx) 2 8 o} olo
$13 |SLO (zp), y 2 8 o} olo
$0F |SLO abs 3 6 o oo
$1F |SLO abs, x 3 7 o o|o
$1B |SLO abs, y 3 7 o oo

Operation: Shift left one bit in memory, then OR accumulator with memory.

* The leftmost bit is shifted into the carry flag
¢ N and Z are set after the ORA

Example:
SLO $C010 ;0F 10 CO
Equivalent Instructions:

ASL $C010
ORA $C010

Test code: Lorenz-2.15/asoa.prg, Lorenz-2.15/asoax.prg,
Lorenz-2.15/asoay.prg, Lorenz-2.15/asoix.prg,
Lorenz-2.15/asoiy.prg, Lorenz-2.15/asoz.prg, Lorenz-2.15/asozx.prg

Example: Multibyte left shift and load leftmost byte

Instead of:

you can write:

ASL data+2
ROL data+1
ROL data+0
LDA data+2

(which is shorter)
SLO data+2

ROL data+l
ROL data+0

; A is zero before reaching here

; A is zero before reaching here

RLA (RLN)

Type: Combination of two operations with the same addressing mode (Sub-instructions: ROL,
AND)

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C
$27 |RLA zp {addr} = rol {addr} A = A and {addr} 2 5 o) ol x
$37 |RLA zp, X 2 6 0 o x
$23 |RLA (zp, X) 2 8 o o|x
$33 |RLA (zp), Yy 2 8 o o|x
$2F |RLA abs 3 6 o} o|x
$3F |RLA abs, x 3 7 o o|x
$3B |RLA abs, y 3 7 o o|x

Operation: Rotate one bit left in memory, then AND accumulator with memory.

* Carry is shifted in as LSB and bit 7 is shifted into Carry
* N and Z are set according to the AND

Example:
RLA $FC,X ;37 FC
Equivalent Instructions:

ROL $FC,X
AND $FC,X

Test code: Lorenz-2.15/rlaa.prg, Lorenz-2.15/rlaax.prg,
Lorenz-2.15/rlaay.prg, Lorenz-2.15/rlaix.prg,
Lorenz-2.15/rlaiy.prg, Lorenz-2.15/rlaz.prg, Lorenz-2.15/rlazx.prg

Example: scroll over a background layer

Lets say you want to create a scroller that moves text over some fixed background graphics.
Suppose the data of the sliding text is stored at scrol1gfx and the data of the fixed background
at backgroundgfx. The actual data that is displayed is located at buf fer .

Combining the sliding and fixed data without RLA would go something like (for the rightmost
byte of the top line of the gfx data) this:

ROL scrollgfx ; shift left (with carry)
LDA scrollgfx

AND backgroundgfx ; combine with background
STA buffer

... which takes 18 cycles in 16 bytes
instead you can write:
LDA backgroundgfx
RLA scrollgfx ; shift left and combine with bg
STA buffer

... which takes 14 cycles in 12 bytes

Example: multiply by 3, 5, 7, 10 ...

Especially if you can make sure the carry flag will not get in the way, RLA can be used to perform
a “multiply and accumulate” to build various non-power-of-two multiplications:

CLC

STA zp

RLA zp ; A * 3

RLA zp ; A X7

RLA zp ; A ¥ 15
CLC

STA zp

RLA zp ; A 3

ADC zp ;A 5

ROL ; A * 10

SRE (LSE)

Type: Combination of two operations with the same addressing mode (Sub-instructions: LSR,
EOR)

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C
$47 |SRE zp {addr} = {addr} / 2 A = A eor {addr} 2 5 [0) olo
$57 |SRE zp, x 2 6 o olo
$43 |SRE (zp, X) 2 8 o olo
$53 |SRE (zp), y 2 8 o olo
$4F |SRE abs 3 6 o olo
$5F |SRE abs, x 3 7 o olo
$5B |SRE abs, y 3 7 o o|o

Operation: Shift right one bit in memory, then EOR accumulator with memory.

* LSB is shifted into the carry flag
* N and Z are set after the EOR

Example:
SRE $C100,X ;5F 00 C1
Equivalent Instructions:

LSR $C100,X
EOR $C100,X

Test code: Lorenz-2.15/1sea.prg, Lorenz-2.15/1seax.prg,
Lorenz-2.15/1seay.prg, Lorenz-2.15/1seix.prg,
Lorenz-2.15/1seiy.prg, Lorenz-2.15/1sez.prg, Lorenz-2.15/1sezx.prg

Example: 8bit 1-of-8 counter

SRE shifts the content of a memory location to the right and EORs the content with A, while SLO
shifts to the left and does an OR instead of EOR.

So this is nice to combine the previous described 8 bit counter with for e.g. setting pixels:

LDA #$80
STA pix

LDA (zp).,y

SRE pix ;shift mask one to the right
;and eor mask with A

BCS advance column ;did the counter under-run?
;SO0 advance column

STA (zp),y

advance_column:

ROR pix ;reset counter
ORA #%$80 ;set first pixel
STA (zp).y

LDA zp ;advance column
;CLC ;is still clear
ADC #3%08

STA zp

BCC +

INC zp+1

- 10 -

RRA (RRD)

Type: Combination of two operations with the same addressing mode (Sub-instructions: ROR,
ADC)

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C
$67 |RRA zp {addr} = ror {addr} A = A adc {addr} 2 5 oo i ol x
$77 |RRA zp, x 2 6 olo i o x
$63 |RRA (zp, Xx) 2 8 olo i ol x
$73 |RRA (zp), y 2 8 olo i ol x
$6F |RRA abs 3 6 olo i 0| x
$7F |RRA abs, x 3 7 o|o i o|x
$7B |RRA abs, y 3 7 olo i 0| X

Operation: Rotate one bit right in memory, then add memory to accumulator (with carry).

* Bit 1 is shifted out into the carry flag and Carry flag is shifted into bit 7 by the ROR
* then all flags are set according to the ADC

This instruction inherits the decimal flag dependency from ADC. For the behaviour in decimal
mode see Unintended decimal mode: RRA (RRD).

Example:
RRA $030C ;6F 0C 03
Equivalent Instructions:

ROR $030C
ADC $030C

Test code: Lorenz-2.15/rraa.prg, Lorenz-2.15/rraax.prg,
Lorenz-2.15/rraay.prg, Lorenz-2.15/rraix.prg,
Lorenz-2.15/rraiy.prg, Lorenz-2.15/rraz.prg,
Lorenz-2.15/rrazx.prg, 64doc/droradc.prg

-11 -

Example: noise LFSR

If you need a fast “noise” generator, something like this could work:

LDA #%$e4 ; initial seed

STA zpl
LDA #%$01 ; initial seed
CLC

; restore accu and carry

RRA zpl
EOR #%01
ROR

; “noise” value in accu
; preserve accu and carry

-12 -

SAX (AXS, AAX)

Type: Combination of two operations with the same addressing mode (Sub-instructions: STA, STX)

Opc. Mnemonic Function Size Cycles |N|V|-|B|D|I|Z|C
$87 |SAX zp {addr} = A & X 2 3
$97 |SAX zp, y 2 4
$83 |SAX (zp, X) 2 6
$8F |SAX abs 3 4

Operation: AND the contents of the A and X registers (without changing the contents of either
register) and stores the result in memory.

Example:
SAX $FE ;87 FE
Equivalent Instructions:

PHP ; save flags and accumulator
PHA

STX $FE

AND $FE

STA $FE

PLA ; restore flags and accumulator
PLP

Note that SAX does not affect any flags in the processor status register, and does not modify A/X.
It would also not actually use the stack, which is only needed to mimic the behaviour with legal
opcodes in this example.

Test code: Lorenz-2.15/axsa.prg, Lorenz-2.15/axsix.prg,
Lorenz-2.15/axsz.prg, Lorenz-2.15/axszy.prg

Note that two addressing modes that SAX is missing, absolute Y indexed and indirect Y indexed,
can be simulated by using the SHA instruction, see SHA (AXA, AHX, TEA).

'"The SAX instruction decodes to two instructions (STA and STX) whose behaviour is identical
except that one hits the output-enable signal for the accumulator, and the other hits the output-
enable signal for the X register. Although it would seem that this would cause ambiguous
behaviour, it turns out that during one half of each cycle the internal operand-output bus is set to
all 'l's, and the read-enable signals for the accumulator and X register (and Y register, stack
pointer, etc.) only allow those registers to set the internal operand-output bus bits to '0". Thus, if a
bit is zero in either the accumulator or the X register, it will be stored as zero, if it's set to 'l' in
both, then nothing will pull down the bus so it will output 1"’

- 13-

Example: store values with mask

This opcode is ideal to set up a permanent mask and store values combined with that mask:

LDX #%aa

LDA $1000,y

SAX $80.y

;set up mask
;load A
:store A & $aa

Example: update Sprite Pointers

this:
LDA
LDX
SAX
STA
LDA
SAX
STA
LDA
SAX
STA
LDA
SAX
STA

#501
#%fe
screen
screen
#503
screen
screen
#%05
screen
screen
#%07
screen

screen

$3f8
$3f9

$3fa
$3fb

$3fc
$3fd

$3fe
$3ff

Often you need to set up all 8 sprite pointers in as few cycles as possible, this could be done like

;00
;01

102
;03

;04
;05

;06
;07

- 14 -

LAX

Type: Combination of two operations with the same addressing mode (Sub-instructions: LDA,
LDX)

Opc.| Mnemonic Function Size Cycles [N|V|-|B|D|I|Z|C
$A7 |LAX zp A, X = {addr} 2 3 o) o)
$B7 |LAX zp, y 2 4 o o
$A3 |LAX (zp, X) 2 6 o o
$B3 |LAX (zp), Yy 2 5 (+1) |o o
$AF |LAX abs 3 4 (o) (o]
$BF |LAX abs, y 3 4 (+1) | o o

Operation: Load both the accumulator and the X register with the contents of a memory location.

Example:
LAX $8400,Y ;BF 00 84
Equivalent Instructions:

LDA $8400,Y
TAX

Test code: Lorenz-2.15/1axa.prg, Lorenz-2.15/1axay.prg,
Lorenz-2.15/1axix.prg, Lorenz-2.15/1laxiy.prg,
Lorenz-2.15/1laxz.prg, Lorenz-2.15/laxzy.prg

- 15 -

Example: load A and X with same value

Loading A and X with the same value is ideal if you manipulate the original value, but later on
need the value again. Instead of loading it again you can either transfer it again from the other
register, or combine A and X again with another illegal opcode.

LAX $1000,y ;load A and X with value from $1000,y
EOR #%$80 ;manipulate A

STA ($fd),y ;store A

LDA #$f8 ; load mask

SAX jump+1 ;store A & X

Also one could so:

LAX $1000,y ;load A and X with value from $1000,y
EOR #$80 ;manipulate A

STA ($fd),y ;store A

TXA ;fetch value again

EOR #%40 ;manipulate

STA ($fb),y ;store

- 16 -

DCP (DCM)

Type: Combination of two operations with the same addressing mode (Sub-instructions: DEC,
CMP)

Opc. | Mnemonic Function Size Cycles |N|V|-|B|D|I|Z|C
$C7 |DCP zp {addr} = {addr} - 1 A cmp {addr} 2 5 o) o|lo
$D7 |DCP zp, x 2 6 o olo
$C3 |DCP (zp, X) 2 8 o olo
$D3 |DCP (zp), ¥y 2 8 o olo
$CF |DCP abs 3 6 o) o|o
$DF |DCP abs, x 3 7 o o|o
$DB |DCP abs, y 3 7 o of|o

Operation: Decrement the contents of a memory location and then compare the result with the A
register.

* N/ Z/C are set according to the compare, after the decrement

Example:
DCP $FF ;C7 FF
Equivalent Instructions:

DEC $FF
CMP $FF

Test code: Lorenz-2.15/dcma.prg, Lorenz-2.15/dcmax.prg,
Lorenz-2.15/dcmay.prg, Lorenz-2.15/dcmix.prg,
Lorenz-2.15/dcmiy.prg, Lorenz-2.15/dcmz.prg,
Lorenz-2.15/dcmzx.prg, 64doc/dincsbc-deccmp.prg

-17 -

Example: decrementing loop counter

X1: .byte $07
X2: .byte $1a

;an effect

DEC x2
LDA x2
CMP x1
BNE

can be written as:
;an effect
LDA x1
DCP x2 ;decrements x2 and compares x2 to A
BNE -

Example: decrementing 16bit counter

For decrementing a 16 bit pointer it is also of good use:

LDA #$ff
DCP ptr
BNE +

DEC ptr+l

;carry is set always for free

- 18 -

ISC (ISB, INS)
Type: Combination of two operations with the same addressing mode (Sub-instructions: INC, SBC)

Opc. Mnemonic Function Size | Cycles (N|V|-|B|/D|I|Z|C
$E7 |ISC zp {addr} = {addr} + 1 A=A - {addr} 2 5 olo i ol x
$F7 |ISC zp, x 2 6 olo i ol x
$E3 |ISC (zp, X) 2 8 o|o i ol x
$F3 |ISC (zp), Yy 2 8 o|o i ol x
$EF |ISC abs 3 6 o|o i ol x
$FF |ISC abs, x 3 7 olo i ol x
$FB |ISC abs, y 3 7 o|lo i ol x

Operation: Increase memory by one, then subtract memory from accumulator (with borrow).
* (s affecting the SBC, and SBC sets N/ V /Z/ C as expected

This instruction inherits the decimal flag dependency from SBC. For the behaviour in decimal mode
see Unintended decimal mode: ISC (ISB, INS).

Example:
ISC $FF ;E7 FF
Equivalent Instructions:

INC $FF
SBC $FF

Test code: Lorenz-2.15/insa.prg, Lorenz-2.15/1insax.prg,
Lorenz-2.15/insay.prg, Lorenz-2.15/1insix.prg,
Lorenz-2.15/1insiy.prg, Lorenz-2.15/insz.prg,
Lorenz-2.15/1inszx.prg, 64doc/dincsbc.prg

-19 -

Example: incrementing loop counter

Instead of:
INC counter
LDA counter
CMP #ENDVALUE
BNE next

you can write: (which saves a cycle when counter is in zero-page)
LDA #ENDVALUE
SEC
ISC counter
BNE next

Example: increment indexed and load value

Instead of:

; A is zero and C=0 before reaching here
INC buffer, x
LDA buffer, x

you can write: (which saves a byte if buffer is in regular memory, and is faster)
; A is zero and C=0 before reaching here

ISC buffer, x
EOR #$ff

-20 -

ANC (ANC2, ANA, ANB)
Type: Combination of an immediate and an implied command (Sub-instructions: AND, ASL/ROL)

Opc. Mnemonic Function Size | Cycles (IN|V|-|B|D|I|Z|C
$0B |ANC #imm A=A & #{imm} 2 2 o olo
$2B |ANC #imm A=A & #{imm} 2 2 [o] o|o

Operation: ANDs the contents of the A register with an immediate value and then moves bit 7 of A

into the Carry flag.

This opcode works basically identically to AND #imm. except that the Carry flag is set to
the same state that the Negative flag is set to. (bit 7 is put into the carry, as if the ASL/ROL

would have been executed)

Example:

ANC #$AA ;2B AA
Equivalent Instructions:

AND #$AA

ROL A - not actually executed, set C as if it was

9

Test code: Lorenz-2.15/anch.prg

-21 -

Example: implicit enforcement of carry flag state

When using an AND instruction before an addition (or any other operation where you might want
to know the state of the carry flag), you might save two cycles (not having to do CLC or SEC) by
using ANC instead of AND. Since a cleared high bit in the value used with the ANC instruction
always leads to a unset carry flag after this operation, you can take advantage of that. An example:

LDA value

ANC #$0f ;Carry flag is always set to 0
;after this op.

ADC value? ;Add a value. CLC not needed!

STA result

Another case like this is when you want to set the A register to #300 specifically, and also happen
to want to have the carry cleared:

ANC #0 ;Carry always cleared after this op,

;and A register always set to zero.

Example: remembering a bit

You can use ANC to simply putting the highest bit of a byte into the carry flag without affecting a
register (by using ANC #$FF). This can be useful sometimes since not that many instructions
destroy the (C)arry flag as well as the (N)egative flag (mainly mathematical operations, shifting
operations and comparison operations), in order to 'remember' this information during the
execution of other code (such as some LDA/STA stuff).

A command that does this too is CMP #$80 (as well as CPX and CPY), which non destructively
puts the high bit of a register into Carry as well.

-2

ALR (ASR)

Type: Combination of an immediate and an implied command (Sub-instructions: AND, LSR)

Opc. Mnemonic Function Size | Cycles |[N|V|B|D|I|Z]|C

$4B |ALR #imm A= (A & #{imm}) / 2 2 2 o o|o

Operation: AND the contents of the A register with an immediate value and then LSRs the result.

* Bit 1 (after the AND) is shifted into the carry flag
* Noand Z are set after the shift

Example:

ALR #S$FE ;4B FE

Equivalent Instructions:

AND #S$FE
LSR A

Test code: Lorenz-2.15/alrb.prg

Example: right shift and mask

Whenever you need to shift and influence the carry afterwards, you can use ALR for that, and if

you even need to apply an and-mask beforehand, you are extra lucky and can do 3 commands by
that:

ALR #$fe ;-> A & $fe = $fe -> 1sr -> carry is cleared

;as bit O was not set before 1lsr

... same as ...
AND #$ff
LSR
CLC

_23-

Example: fetch 2 bits from a byte

LDA #%10110110
LSR
ALR #%$03%*2

This will mask out and shift down bits 2 and 3. Note that the mask is applied before shifting,
therefore the mask is multiplied by two.

Example: add offset depending on LSB

Another nice trick to transform a single bit into a new value (good for adding offsets depending
on the value of a single bit) offset is the following:

LDA xposl ;load a value
ALR #%01 ;move LSB to carry and clear A
BCC +
LDA #$3f ;carry is set
+
ADC #stuff ;things will work sane, as offset

;includes already the carry

As you can see we have now either loaded $00 or $40 (carry!) to A depending on the state of bit 0,
that is ideal for e.g. when we want to load from a different bank depending on if a position is odd
or even. As you see, the above example is even faster than this (as the shifting always takes 6
cycles, whereas the above example takes 5/6 cycles):

LDA xposl

ALR #%01

ROR

LSR

ADC #stuff ;things will work sane as carry 1is
;always clear (upper bits are masked)

-4 -

ARR

Type: Combination of an immediate and an implied command (Sub-instructions: AND, ROR)

Opc. Mnemonic Function Size | Cycles [N|V|-|B|D|I|Z|C

$6B |ARR #imm A= (A & #{imm}) / 2 2 2 0|0 i 0| X

note to ARR: part of this command are some ADC mechanisms. following effects appear after AND
but before ROR: the V-Flag is set according to (A and #{imm}) + #{imm}, bit 0 does NOT go into
carry, but bit 7 is exchanged with the carry.

The following applies to when the decimal flag is clear, for the behaviour in decimal mode see
Unintended decimal mode: ARR.

ARR ANDs the accumulator with an immediate value and then rotates the content right. The
resulting carry is however not influenced by the LSB as expected from a normal rotate. The Carry
and the state of the overflow-flag depend on the state of bit 6 and 7 before the rotate occurs, but
after the and-operation has happened, and will be set like shown in the following table:

Input before ROR OQutput

Carry | Bit 7 | Bit 6 Carry Overflow Bit 7 Bit 6
= Input Bit 7 | = Input Bit 7 #~ Input Bit 6 = Input Carry = Input Bit 7

0 0 0 0 0 0 0

0 [C] 1 0 1 0 0

0 1 0 1 1 0 1

0 1 1 1 [C] 0 1

1 0 0 0 0 1 0

1 0 1 0 1 1 0

1 1 0 1 1 1 1

1 1 1 1 0 1 1
Example:

ARR #$7F ;6B 7F

Equivalent Instructions:

AND #$7F
ROR A ; fTlags are different with ARR, see the
; above table

Test code: CPU/asap/cpu_decimal.prg, Lorenz-2.15/arrb.prg

_25-

Example: rotating 16 bit values

LDA #>addr

LSR

STA $fc

ARR #%00 ;A = A & $00 -> ror A
STA $fb

... 1s the same as ...

LDA #>addr
LSR

STA $fc
LDA #$00
ROR

STA $fb

Note: Again, you can influence the final state of the carry by either using #$00 or #$01 for the
LDA (500 or $80 in case of ARR, but the later only if A has bit 7 set as well, so be carefully here).

- 26 -

Example: load register depending on carry

If you need to load a register depending on some branch, you might be able to save some cycles.
Imagine you have the following to load Y depending on the state of the carry:

CMP $1000

BCS +

LDY #%$00

BEQ ++ ; jump always
"

LDY #$80
++

This can be solved in less cycles and less memory:

CMP $1000
ARR #3500
TAY

Example: shift zeros or ones into accumulator

Due to the fact that the carry resembles the state of bit 7 after ARR is executed, one can
continuously shift in zeroes or ones into a byte:

LDA #$80

SEC

ARR #$ff ; -> A = $%$cO0 -> sec
ARR #$ff ; -> A = %e0 -> sec
ARR #$ff ; -> A = $f0 -> sec
LDA #$7f

CLC

ARR #$ff ; -> A = $3f -> clc
ARR #$ff ; -> A = 3%1f -> clc
ARR #$ff ; -> A = 3%0f -> clc

_27 -

SBX (AXS, SAX, XMA)

Type: Combination of an immediate and an implied command (Sub-instructions: CMP, DEX)

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C

$CB |SBX #imm X =A&X - #{imm} 2 2 (o] o|o

Operation: SBX ANDs the contents of the A and X registers (leaving the contents of A intact),
subtracts an immediate value, and then stores the result in X. ... A few points might be made about
the action of subtracting an immediate value. It actually works just like the CMP instruction, except
that CMP does not store the result of the subtraction it performs in any register.

* This subtract operation is not affected by the state of the Carry flag, though it does affect the
Carry flag. It does not affect the Overflow flag. (Flags are set like with CMP, not SBC)
* N and Z are set according to the value ending up in X

Another property of this opcode is that it doesn't respect the decimal mode, since it is derived from
CMP rather than SBC. So if you need to perform table lookups and arithmetic in a tight interrupt
routine there's no need to clear the decimal flag in case you've got some code running that operates
in decimal mode.

Example:
SBX #3$5A ;CB 5A

Equivalent Instructions:

STA $02 ; save accumulator

TXA ; hack because there is no '"AND WITH X'
AND $02 ; instruction

CMP #$5A ; set flags like CMP

PHP ; save flags

SEC

CLD ; subtract without being affected by
SBC #$5A ; decimal mode

TAX

LDA $02 ; restore accumulator

PLP ; restore flags

Note: SBX is not easily expressed entirely correct using legal opcodes. Memory location $02
would not be altered by the SBX opcode, and it would not use the stack.

Test code: Lorenz-2.15/sbxb.prg, 64doc/sbx.prg, 64doc/vsbx.prg,
64doc/sbx-cl00.prg

_28 -

Example: decrement X by more than 1

Sometimes you need/want to decrease the X register by more than one. That is often done by the
following piece of code:

TXA

SEC

SBC #%$xx ;where xx is (obviously) the value
;to decrease by

TAX

This procedure takes 8 cycles (and 5 bytes in memory). If the value of the carry flag is always
known at this point in the code, it can be removed and the snippet would then take 6 cycles (and 4
bytes in memory). However, you can use SBX like this:

And the modified code snippet using SBX instead looks like this:

LDA #$ff ;Next opcode contains a implicit AND with
;the A register, so turn all bits ON!
SBX #%$xx ;where xx is the value to decrease by

This code kills the A register of course, but so does the 'standard' version above. It can be made
even shorter by using a 'txa' instruction instead of the 'lda #$ff'. That works since X and A will be
equal after the 'txa', and ANDing a value with itself produces no change, hence the AND effect of
SBX is 'disarmed' and the subtraction will proceed as expected:

TXA
SBX #$xx

Note that in this case you do not have to worry about the carry flag at all, and all in all the whole
procedure takes only 4 cycles (and 3 bytes in memory)

-29.

Example: decrement nibbles

Imagine you have a byte that is divided into two nibbles (just what you often use in 4x4 effects),
now you want to decrement each nibble, but when the low nibble underflows, this will decrement
the high nibble as well, here the SBX command can help to find out about that special case:

LDA $0400,y ;load value
LDX #3$0f ;set up mask
SBX #%00 ;check if low nibble underflows
; -> X = A & $0f
BNE + ;all fine, decrement both nibbles
;the cheap way, carry 1is set!
SBC #3%f0 ;do wrap around by hand
SEC
+
SBC #$11 ;decrement both nibbles,
;carry is set already by sbx
... can be substituted by ...
LDA #3$0f ;set up mask beforehand,
;can be reused for each turn
STA $02
LDA %0400,y
BIT $02 ;apply mask without destroying A
BNE +
CLC
ADC #%10
+
SEC ;we need to set carry
SBC #3511

-30 -

Example: apply a mask to an index

Furthermore, the SBX command can also be used to apply a mask to an index easily:

LDX #3$03 ;mask

LDA vall ;load value

SBX #%00 ;mask out lower 2 bits -> X

LSR ;A 1s untouched, so we can continue

;doing stuff with A
LSR
STA vall
LDA colours,x ;fetch colour from table

instead of (which takes 3 cycles more):

LDA vall

AND #%03

TAX ;set up index

LSR vall ;A is clobbered, so shift direct
LSR vall

LDA colours, X

The described case makes it easy to decode 4 multicolour pixel pairs by always setting up an
index from the lowest two bits and fetching the appropriate colour from a previously set up table.

-31 -

SBC (USBC, USB)

Type: Combination of an immediate and an implied command (Sub-instructions: SBC, NOP)

Size

Cycles

N

Vi-

B

D|I

Opc. Mnemonic Function

2

o

(o]

i

A=A - #{imm}

$EB |SBC #imm

Operation: subtract immediate value from accumulator with carry. Same as the regular SBC.

Test code: Lorenz-2.15/sbcb-eb.prg

-32-

LAS (LAR)
Type: Combinations of STA/TXS and LDA/TSX

Opc. Mnemonic Function Size |Cycles|N|V|-|B|/D|I|Z|C

$BB |LAS abs, vy A,X,SP = {addr} & SP 3 4 (+1) |o o

Operation: AND memory with stack pointer, transfer result to accumulator, X register and stack
pointer.

* N and Z are set as expected by a load instruction

Example:

LAS $Co00, Y ;BB AA

Equivalent Instructions:

TSX
TXA
AND $C000, Y
TAX
TXS

Test code: CPU/asap/cpu_las.prg, Lorenz-2.15/1asay.prg

Note: LAS is called as "probably unreliable' in one source - this does not seem to be the case though

It can be the case that the stack is not used in a main routine, since it is cheaper to store things in
the zeropage. Of course when a subroutine is called or an interrupt triggers the return address (and
status register in case of an IRQ) is stored on the stack, but after returning to the main loop the
stackpointer (SP) is back to the same value again. This means that you can change the SP at will in
the main loop without messing things up. For example, you can use it as temporary storage of the X
register with TXS/TSX. This makes it possible to use LAS (and TAS).

-33 -

Example: cycle an index within bounds

If you want to cycle an index and wrap around to zero at a number that is a power of two, you
could do that with LAS. For example to cycle from 0-15, suppose we start with SP=8$f7 (any value
will work):

LAS mask,y ; 1f Mask is one page filled with $0f,
; this brings the SP to $07 (and A and X
; as well) for any Y.

DEX ; X = %06

TXS ; SP is now $06, so the next time
; 'lda List,x' will pick the next value

LDA table, x ; use X as index

SP and X after the LAS instruction will always remain in the range 0-$0f, no need to check for
that!

Instead of the lda Table,x one could use pla if the data is on the stack and no interrupt can take
place during this code snippet.Then dex should be replaced by e.g. sbx #$11 to bring the SP to a
safe area, to ensure the data on the stack is not messed up in other parts of the code.

-34 -

NOP (NPO, UNP)
Type: no effect

Opc. Mnemonic Function Size |Cycles |N|V|-|B|D|I|Z|C

NOP (DOP, SKB)
Type: no effect

Opc. Mnemonic Function Size |Cycles ([N|V|-|B|D|I|Z|C
$82 |NOP #imm Fetch #imm 2 2
$C2 |NOP #imm Fetch #imm 2 2
$E2 |NOP #imm Fetch #imm 2 2

Opc. Mnemonic Function Size |Cycles |N|V|-|B|D|I|Z|C

-35-

Opc. Mnemonic Function Size |Cycles |N|V|-|B|D|I|Z|C
$14 |NOP zp, x Fetch {addr} 2 4
$34 |NOP zp, x Fetch {addr} 2 4
$54 |NOP zp, x Fetch {addr} 2 4
$74 |NOP zp, x Fetch {addr} 2 4
$D4 |NOP zp, x Fetch {addr} 2 4
$F4 |[NOP zp, x Fetch {addr} 2 4

Operation: NOP zp and NOP zp, x actually perform a read operation. It's just that the value read
is not stored in any register.

Note: NOP opcodes $82, $C2, $E2 may be JAMs. Since only one source claims this, and no other
sources corroborate this, it must be true on very few machines. On all others, these opcodes always
perform 'no operation'. It is perhaps a good idea to avoid using them anyway.

NOP (TOP, SKW)
Type: no effect

Opc. Mnemonic Function Size |Cycles |N|V|-|B|D|I|Z|C
$0C |NOP abs Fetch {addr} 3 4

Opc. Mnemonic Function Size |Cycles |N|V|-|B|D|I|Z|C
$1C |NOP abs, x Fetch {addr} 3 4 (+1)

$3C |NOP abs, x Fetch {addr} 3 4 (+1)

$5C |NOP abs, x Fetch {addr} 3 4 (+1)

$7C |NOP abs, x Fetch {addr} 3 4 (+1)

$DC |NOP abs, x Fetch {addr} 3 4 (+1)

$FC |NOP abs, x Fetch {addr} 3 4 (+1)

Operation: These actually perform a read operation. It's just that the value read is not stored in any
register. Further, opcode $0C uses the absolute addressing mode. The two bytes which follow it
form the absolute address. All the other 3 byte NOP opcodes use the absolute indexed X addressing
mode. If a page boundary is crossed, the execution time of one of these NOP opcodes is upped to 5
clock cycles.

Test code: Lorenz-2.15/nopa.prg, Lorenz-2.15/nopax.prg,
Lorenz-2.15/nopb.prg, Lorenz-2.15/nopn.prg, Lorenz-2.15/nopz.prg,
Lorenz-2.15/nopzx.prg

- 36 -

Example: acknowledge IRQ

If for some reason you want to acknowledge a timer IRQ and can not afford changing a register or
the CPU status, you can use the fact that some of these NOPs actually perform a read operation:

NOP $DCOD ;0C 0D DC

-37-

JAM (KIL, HLT, CIM, CRP)
Type: lock-up

Opc. Mnemonic Function Size |Cycles |N|V|-|B|D|I|Z|C
$02 |JAM CPU lock-up 1 =
$12 |JAM CPU lock-up 1 -
$22 |JAM CPU lock-up 1 -
$32 |JAM CPU lock-up 1 -
$42 |JAM CPU lock-up 1 -
$52 |JAM CPU lock-up 1 -
$62 |JAM CPU lock-up 1 -
$72 |JAM CPU lock-up 1 -
$92 |JAM CPU lock-up 1 -
$B2 |JAM CPU lock-up 1 -
$D2 |JAM CPU lock-up 1 =
$F2 |JAM CPU lock-up 1 =

Operation: When one of these opcodes is executed, the byte following the opcode will be fetched,
data- and address bus will be set to $ff (all 1s) and program execution ceases. No hardware
interrupts will execute either. Only a reset will restart execution. This opcode leaves no trace of any
operation performed! No registers or flags affected.

Test code: CPU/cpujam/cpujamXX.prg

Example: stop execution

Sometimes in a very memory constrained situation (like a 4k demo), you may want to stop
execution of whatever is running with least effort — this can be achieved by using one of the JAM
opcodes. Keep in mind though that only the CPU will stop.

LDA #0
STA $D418
JAM ;02

Simulation link:
http://visual6502.org/JSSim/expert.html?graphics=t&a=0&steps=12&d=027{ft00&loglevel=4

- 38 -

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=12&d=027fff00&loglevel=4

Unstable Opcodes

Out of all opcodes, just seven fall into the so called 'unstable' category. This is where in earlier
documents often the half esoteric black magic started, and what took most time and effort to update
and fix for the current state of this version of the truth: Only two of those seven opcodes are
actually unstable in the sense that they may produce a truly unpredictable result. The other
five opcodes actually produce predictable results — but the conditions under which they do that and
the produced results are a bit unexpected. All seven opcodes can be used safely when certain
preconditions are met.

‘'unstable address high byte' group

There are five opcodes in this group. None of these opcodes affect the accumulator, the X register,
the Y register, or the processor status register. They have two ‘instabilities’ which have to be
'disarmed' by careful programming.

» If the target address crosses a page boundary because of indexing, the instruction may not
store at the intended address. Instead the high byte of the target address will get
incremented as expected, and then ANDed with the value stored. For this reason you
should generally keep your index in a range that page boundaries are not crossed.

* Sometimes the actual value is stored in memory and the AND with <addrhi+1> part drops
off (ex. SHY becomes true STY). This happens when the RDY line is used to stop the CPU
(pulled low), i.e. either a 'bad line' or sprite DMA starts in the second last cycle of the
instruction. 'For example, it never seems to occur if either the screen is blanked or C128
2MHz mode is enabled.' For this reason you will have to choose a suitable target address
based on what kind of values you want to store. 'For $fe00 there's no problem, since
anding with $ff is the same as not anding. And if your values don't mind whether they are
anded, e.g. if they are all $00-$7f for shy $7e00,x, there is also no difference whether the
and works or not.' If you make sure no DMA starts when any of these opcodes
executes, the value written is always ANDed with the highbyte of the target address,

plus one.
SHA (zp), y TAS abs, y SHY abs, x SHX abs, y SHA abs,y
Opcode $93 $9b $9c $9e $9f
Value A & X A & X Y X A & X
Cycle N 5 4 4 4 4
Highbyte of address written to Value written
No DMA in Cycle N DMA in Cycle N No DMA in Cycle N DMA in Cycle N
Page not crossed {H} {H} Value & {H+1} Value
Page crossed {H+1} & Value {H+1} & Value Value & {H+1} Value

-390 .-

"To explain what's going on take a look at LDA ABX and STA ABX first.

LDA ABX takes 4 cycles unless a page wrap occurred (address+X lies in another page than
address) in which case the value read during the 4th cycle (which was read with the original high
byte) is discarded and in the 5th cycle a read is made again, this time from the correct address.
During the 4th cycle the high address byte is incremented in order to have a correct high byte if the
Sth cycle is necessary. The byte read from memory is buffered and copied to A during the read of
the next command's opcode.

But there's a problem with storage commands: they need to put the value to write on the internal
bus which is used for address computations as well. To avoid collisions STA ABX contains a fix-up
which makes it always take 5 cycles (the value is always written in the 5th cycle as the high byte is
computed in the 4th cycle).

This fix-up requires some transistors on the CPU, the guys at MOS forgot (or were unable?) to
make them detect STX ABY (which becomes SHX) and a few others, they are missing that fix-up so
this results in a collision between the value and high address byte computation.’

- 40 -

SHA (AXA, AHX, TEA)
Type: Combinations of STA/STX/STY

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C
$93 |SHA (zp), y {addr} = A & X & {H+1} 2 6
$9F |SHA abs, y {addr} = A & X & {H+1} 3 5

Operation: This opcode stores the result of A AND X AND the high byte of the target address of
the operand +1 in memory.

Instabilities:
* The value written is ANDed with &{H+1}, except when the RDY line goes low in the 4"
(opcode $9) or 5" (opcode $93) cycle.
* When adding Y to the target address causes a page boundary crossing, the highbyte of the
target address is incremented by one (as expected), and then ANDed with (A & X).

Example:
SHA $7133,Y ;9F 33 71

Equivalent Instructions:

PHP ; save flags and accumulator

PHA

STX $02 ; hack which is needed because there is
AND $02 ; no "AND-WITH-X"' instruction

AND #%72 ; High-byte of Address + 1

STA $7133,Y

LDX $02 ; restore X-register

PLA ; restore flags and accumulator

PLP

Note: Memory location $02 would not be altered by the SHA opcode and it would not use the
stack.

Test code:
e general: Lorenz-2.15/shaay.prg, Lorenz-2.15/shaiy.prg
* &{H+1} drop off: CPU/sha/shazpy2.prg CPU/sha/shazpy3.prg CPU/sha/
shaabsy2.prg CPU/sha/shaabsy3.prg CPU/sha/shazpy4.prg
CPU/sha/shaabsy4.prg
* page boundaries: CPU/sha/shazpyl.prg CPU/sha/shaabsyl.prg CPU/sha/
shazpy5.prg CPU/sha/shaabsy5.prg

_4] -

Example: SAX abs, y

When using $FE00 as address, the value stored would be ANDed by $FF and the SHA turns into a
SAX:

SHA $FE00,Y ; SAX $FE0O,Y

Example: SAX (zp), y

When using $FE00 as address, the value stored would be ANDed by $FF and the SHA turns into a
SAX:

LDA #S$FE
STA $03
LDA #3$00
STA $02

SHA ($02).Y : SAX ($02).Y

-4 -

SHX (A11, SXA, XAS, TEX)
Type: Combinations of STA/STX/STY

Opc.

Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C

$9E

SHX abs, y {addr} = X & {H+1} 3 5

Operation: AND X register with the high byte of the target address of the argument + 1. Store the
result in memory.

Instabilities:

The value written is ANDed with &{H+1}, except when the RDY line goes low in the 4"
cycle.

When adding Y to the target address causes a page boundary crossing, the highbyte of the
target address is incremented by one (as expected), and then ANDed with X.

Example:

SHX $6430,Y ;9E 30 64

Equivalent Instructions:

PHP ; save flags and accumulator
PHA

TXA

AND #$65 ; High byte of Address + 1

STA $6430,Y

PLA ; restore flags and accumulator
PLP

Note: The SHX opcode would not use the stack.

Test code:

general: CPU/asap/cpu_shx.prg, Lorenz-2.15/shxay.prg
&{H+1} drop off: CPU/shxy/shxy2.prg, CPU/shxy/shxy3.prg,
CPU/shxy/shxy4d.prg, CPU/shxy/shx-t2.prg, CPU/shxy/shx-
test.prg

page boundaries: CPU/shxy/shxyl.prg, CPU/shxy/shxy5.prg

Simulation links:

&{H+1} drop off:

http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=20&d=a27fa0f39e0211&logmore=rdy&rdy0=15&rdy1=16
page boundary crossing anomaly:
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=18&d=a27fa0f39e0f1 1
& {H+1} drop off, plus page boundary crossing anomaly:
http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=20&d=a27fa0f39e0f11&logmore=rdy&rdy0=15&rdy1=16

_43 -

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a27fa0f39e0f11&logmore=rdy&rdy0=15&rdy1=16
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a27fa0f39e0f11&logmore=rdy&rdy0=15&rdy1=16
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=18&d=a27fa0f39e0f11
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a27fa0f39e0211&logmore=rdy&rdy0=15&rdy1=16
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=20&d=a27fa0f39e0211&logmore=rdy&rdy0=15&rdy1=16

Example: STX abs, y

When using $FE00 as address, the value stored would be ANDed by $FF and the SHX turns into a
STX:

SHX $FE00,Y ; STX $FE0O,Y

_44 -

SHY (A11, SYA, SAY, TEY)
Type: Combinations of STA/STX/STY

Opc. Mnemonic Function Size |Cycles|N|V

$9C |[SHY abs, x {addr} =Y & {H+1} 3 5

Operation: AND Y register with the high byte of the target address of the argument + 1. Store the

result in memory.

Instabilities:

* The value written is ANDed with &{H+1}, except when the RDY line goes low in the 4"

cycle.

* When adding X to the target address causes a page boundary crossing, the highbyte of the

target address is incremented by one (as expected), and then ANDed with Y.

Example:

SHY $7700,X ;9C 00 77

Equivalent Instructions:

PHP ; save flags and accumulator

PHA

TYA

AND #$78 ; High byte of Address + 1

STA $7700,X

PLA ; restore flags and accumulator

PLP

Note: the SHY opcode would not use the stack.

Test code:
* general: CPU/asap/cpu_shx.prg, Lorenz-2.15/shyax.prg
* &{H+1} drop off: CPU/shxy/shyx2.prg, CPU/shxy/shyx3.prg,
CPU/shxy/shyx4.prg
* page boundaries: CPU/shxy/shyx1l.prg, CPU/shxy/shyx5.prg

- 45 -

Example: STY abs, x

When using $FE00 as address, the value stored would be ANDed by $FF and the SHY turns into a
STY:

SHY $FE00,X ; STY $FE0O,X

- 46 -

TAS (XAS, SHS)
Type: Combinations of STA/TXS and LDA/TSX

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C

$9B |TAS abs, vy SP = A & X {addr} = A & X & {H+1} 3 5

Operation: This opcode ANDs the contents of the A and X registers (without changing the contents
of either register) and transfers the result to the stack pointer. It then ANDs that result with the
contents of the high byte of the target address of the operand +1 and stores that final result in
memory.

Instabilities:
* The value written is ANDed with &{H+1}, except when the RDY line goes low in the 4"
cycle.

* When adding Y to the target address causes a page boundary crossing, the highbyte of the
target address is incremented by one (as expected), and then ANDed with (A & X).

Example:
TAS $7700,Y ; 9B 00 77
Equivalent Instructions:

; save flags, A, X

PHP

STA %03 ; save A

PLA

STA $02 ; save flags

STX %04 ; save X

LDA $03 ;A

AND $04 ; and with X

TAX ; remember A & X

AND #$78 ; High-byte of Address + 1
STA $7700,Y ; addr = A & X & H+1
TXS ; sp = A &X

; restore flags, A, X

LDX %04 ; X

LDA $03 ; flags

PHA

LDA %02 ; akku

PLP ; restore flags

Note: The above code does in many ways not accurately resemble how the TAS opcode works
exactly, memory location $02-$04 would not be altered and the stack would not be used.

_47 -

Test code:

e general: Lorenz-2.15/shsay.prg

* &{H+1} drop off: CPU/shs/shsabsy2.prg, CPU/shs/shsabsy3.prg,
CPU/shs/shsabsy4.prg

* page boundaries: CPU/shs/shsabsyl.prg, CPU/shs/shsabsy5.prg

Example: SAX abs, y with SP=A & X

When using $FE00 as address, the value stored would be ANDed by $FF and the TAS turns into a
SAX, plus it moves the result of ANDing A and X into the stackpointer. This can be extremely
powerful if you can afford trashing the stackpointer (ie saving/restoring it) in a piece of code
where you want to compute A & X and reuse the resulting value a few times, preferably in the X

register.

TSX
STX

LDA
LDX
TAS

TSX
LDY
STY
TSX
LDY
STY

LDX
TXS

temp
GLOBALMASK

LOCALMASK
$FE0OO,Y

dataO, x
bitmap+0

datal,x
bitmap+1

temp

’

save stackpointer

SAX $FEGO,Y stores A & X & ($FE + 1)
also sets SP = A & X

get A & X

get A & X

restore stackpointer

_48 -

'Magic Constant' group

The two opcodes in this group are combinations of an immediate and an implied command, and
involve a highly unstable 'magic constant', which is chip and/or temperature (and thus time!)
dependent. The behaviour also depends on the RDY line, which needs extra caution.

These two opcodes are the only ones that can be considered truly unstable.

* The ‘magic constant’ must be considered to be totally random. Although often reported as
being eg Oxee, Oxef or 0xff, you should not rely on any of this being the case. You must use
these opcodes in a way so the ‘magic constant’ is taken out of the equation. Do not rely
on reading the ‘magic constant’ either, as it may change with time and temperature.

* The ‘magic constant’ somehow interacts with the RDY line. In particular bits 0 and 4 seem
to be “weaker” than the other bits, and may drop to 0 when a DMA starts. It may be
notable that this behaviour can not be reproduced in visual6502, which hints on it
being some analog side effect that the simulation does not cover. This also contributes to
the instabilities.

- 49 -

ANE (XAA, AXM)

Type: Combination of an immediate and an implied command

Opc. Mnemonic Function Size Cycles|N|V|-|B|D|I|Z|C

$8B ANE #imm A = (A | {CONST}) & X & #{imm} 2 2 (o} [e}

Operation: This opcode ORs the A register with CONST, ANDs the result with X. ANDs the result
with an immediate value, and then stores the result in A.

* N and Z are set according to the value of the accumulator before the instruction executed

Instability: CONST is chip- and/or temperature dependent (common values may be $00, $ff, See
...). Some dependency on the RDY line (emulated in VICE 3.3-r35822). Bit 0 and Bit 4 are
“weaker” than the other bits, and may drop to 0 in the first cycle of DMA when RDY goes low.

Do not use ANE with any immediate value other than 0, or when the accumulator value is $ff
(both take the magic constant out of the equation)! (Or, more accurately, these are safe if all bits
that could be 0 in A are 0 in either the immediate value or X or both.)

Example:

ANE #{IMM} ;8B {IMM}

Equivalent Instructions:

ORA #{CONST}

AND #{IMM}
STX $02 ;: hack because there is no 'AND WITH X'
AND $62 ; instruction

Note: Memory location $02 would not be altered by the ANE opcode.

Test code:
» general: CPU/asap/cpu_ane.prg, Lorenz-2.15/aneb.prg
* temperature dependency: general/ane-lax/ane-lax.prg
* dependency on RDY 1line: CPU/ane/ane.prg, CPU/ane/ane-
none.prg, CPU/ane/ane-border.prg

Simulation Links:
* read magic constant:
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13 &d=a200a9f8bffea

for some very detailed info on how this opcode works look here:
http://visual6502.org/wiki/index.php?title=6502_Opcode 8B (XAA, ANE)

-50 -

http://visual6502.org/wiki/index.php?title=6502_Opcode_8B_(XAA,_ANE)
http://visual6502.org/wiki/index.php?title=6502_Opcode_8B_(XAA,_ANE)
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a9ff8bffea
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a9ff8bffea
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a9ff8bffea

Example: clear A

ANE #0 ; 8B 00
is equivalent to
LDA #0

. and is safe to use as using 0 as the immediate value takes the 'magic constant' out of the
equation.

Example: A= X AND immediate

;LDA #$ff assuming A=$ff from previous operation

ANE #%$0f ; 8B Of A = (A | const) & X & $0Of
is equivalent to

TXA

AND #3%0f

... and is safe to use as a value of $ff in accumulator takes the 'magic constant' out of the equation.

Example: read the 'magic constant’

To determine the 'magic constant' which is in effect on your particular machine, you can do this:
LDA #0
LDX #$ff
ANE #$ff ; A contains the magic constant

This is mostly useful for experimenting and proving the constant is actually different on different
set-ups. Do not rely on this value! It may not be stable even on the same chip and depend on
temperature and/or the supplied voltage.

-51 -

LAX #imm (ATX, LXA, OAL, ANX)

Type: Combination of an immediate and an implied command

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C

$AB |LAX #imm A,X = (A | {CONST}) & #{imm} 2 2 0 0

Operation: This opcode ORs the A register with CONST, ANDs the result with an immediate
value, and then stores the result in both A and X.

* Nand Z are set according to the value of the accumulator before the instruction executed

Instability: CONST is chip- and/or temperature dependent (common values may be $00, $ff, ...).
Some dependency on the RDY line. (emulated in VICE 3.3-r35884). Bit 0 and Bit 4 are “weaker”
than the other bits, and may drop to 0 in the first cycle of DMA when RDY goes low.

Do not use LAX #imm with any immediate value other than 0, or when the accumulator value
is $ff (both take the magic constant out of the equation)! (Or, more accurately, these are safe if
all bits that could be 0 in A are 0 in the immediate value.)

Example:

LAX #{IMM) :AB {IMM}

Equivalent Instructions:

ORA #{CONST}
AND #{IMM}
TAX

Test code:
* general: CPU/asap/cpu_anx.prg, Lorenz-2.15/1xab.prg
* temperature dependency: general/ane-lax/ane-lax.prg
* dependency on RDY line: CPU/lax/lax.prg, CPU/lax/lax-
border.prg, CPU/1lax/lax-none.prg

Simulation Links:
* read magic constant:
http://visual6502.org/JSSim/expert.html?geraphics=f&a=0&steps=13&d=a200a900abffea

_52-

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=13&d=a200a900abffea

The problem with LAX immediate is that its decode is a combination of LDA, LDX, and
TAX. This causes the current contents of the accumulator to be merged in with the value
loaded from the data bus. Normally, during an LDA or LDX instruction, it doesn't matter if
the operand-input bus is stable during the whole half-cycle for which they're enabled.
Nothing is reading from the registers while they are being loaded; as long as the bus has
stabilized before the load-enable signal goes away, the registers will end up with the correct
value. The LAX opcode, however, enables the 'output accumulator' signal as well as the
'feed output bus to input bus' signal. My 6507 documentation doesn't show which buses
have 'true' or 'inverted' logic levels, but a natural implementation would likely use the
opposite signal polarity for the output bus and input bus (so the connections between them
would be inverting buffers). Under that scenario, LAX would represent a race condition to
see which bus got a 'low’' signal first. A variety of factors could influence 'who wins' such a
race.’

-53 -

Example: clear A and X

LAX #0 ; AB 00
is equivalent to:

LDA #0

TAX

. and is safe to use, as using 0 as the immediate value takes the 'magic constant' out of the
equation.

Example: load A and X with same value

; assuming A=$ff from previous operation
LAX #<value> ; AB <value>
is equivalent to:
LDA #<value>
TAX

. and is safe to use, as a value of $ff in accumulator takes the 'magic constant' out of the
equation.

Example: read the 'magic constant’

To determine the 'magic constant' which is in effect on your particular machine, you can do this:

LDA #0
LAX #$ff ; A,X contain the magic constant

This is mostly useful for experimenting and proving the constant is actually different on different
set-ups. Do not rely on this value! It may not be stable even on the same chip and depend on
temperature and/or the supplied voltage.

_54 -

Unintended addressing modes

Absolute Y Indexed (R-M-W)

* 3 bytes, 7 cycles

db 1o hi DCP abs, y
fb 1o hi ISC abs, y
7b 1o hi RRA abs, y
3b 1o hi RLA abs, y

1b 1o hi SLO abs, vy
5b 1o hi SRE abs, y

Cycle Address-Bus Data-Bus Read/Write
1 PC Op Code Fetch R
2 PC + 1 Absolute Address Low R
3 PC + 2 Absolute Address High R
4 < AAH, AAL + Y > < Internal Operation > R
5 AA + Y Data Low R
6 AA + Y 0ld Data Low W
7 AA + Y New Data Low W
Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a0d0db10ecacacacacacacacacacacacal 280

equivalent legal mode: Absolute X Indexed (R-M-W)

* 3 bytes, 7 cycles

ASL abs, x DEC abs, x INC abs, LSR abs, x ROL abs, x ROR abs,

df 1o hi DCP abs, x

ff lo hi ISC abs, x

7f 1o hi RRA abs, x

3f 1o hi RLA abs, x

1f 1o hi SLO abs, x

5f 1o hi SRE abs, x

Cycle Address-Bus Data-Bus Read/Write
1 PC Op Code Fetch R
2 PC + 1 Absolute Address Low R
3 PC + 2 Absolute Address High R
4 < AAH, AAL + X > < Internal Operation > R
5 AA + X Data Low R
6 AA + X 01d Data Low W
7 AA + X New Data Low W

-55-

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

Zeropage X Indexed Indirect (R-M-W)

* 2 bytes, 8 cycles

C3 zp DCP (zp, x)
E3 zp ISC (zp, x)
23 zp RLA (zp, x)
63 zp RRA (zp, x)
03 zp SLO (zp, x)
43 zp SRE (zp, x)

Cycle Address-Bus Data-Bus Read/Write
1 PC Op Code Fetch R

2 PC + 1 Direct Offset R

3 <PC+1> < Internal Operation > R

4 DO + X Absolute Address Low R

5 DO + X + 1 Absolute Address High R

6 AA Data Low R

7 AA 01ld Data Low W

8 AA New Data Low W
Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a2d0c310cacacacacacacacacacacaecal 280

related legal mode: Zeropage X Indexed Indirect

* 2 bytes, 6 cycles

ADC (zp, x) AND (zp, Xx) x) EOR (zp, x) LDA (zp, x) ORA (zp, x) SBC (zp, x)
STA (zp, Xx)

a3 zp LAX (zp, x)

83 zp SAX (zp, x)

Cycle Address-Bus Data-Bus Read/Write
1 PC Op Code Fetch R

2 PC + 1 Direct Offset R

3 <PC+1> < Internal Operation > R

4 DO + X Absolute Address Low R

5 DO + X + 1 Absolute Address High R

6 AA Data Low R/W

- 56 -

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

Zeropage Indirect Y Indexed (R-M-W)
* 2 bytes, 8 cycles

D3 zp DCP (zp), ¥y
F3 zp ISC (zp), vy
33 zp RLA (zp), y
73 zp RRA (zp), vy
13 zp SLO (zp), y
53 zp SRE (zp), y
Cycle Address-Bus Data-Bus Read/Write
1 PC Op Code Fetch R
2 PC + 1 Direct Offset Fetch R
3 DO Absolute Address Low R
4 DO + 1 Absolute Address High R
5 < AAH, AAL + Y > < Internal Operation > R
6 AA + Y Data Low R
7 AA + Y 0ld Data Low W
8 AA + Y New Data Low W
Simulation Link: http://visual6502.org/JSSim/expert.html?
graphics=f&a=0&steps=22&d=a0d0d3 10eacacacacacacacacacaecacal 280
related legal mode: Zeropage Indirect Y Indexed
e 2 bytes, 5+1 cycles
ADC (zp), y AND (zp), y CMP (zp), y EOR (zp), y LDA (zp), y ORA (zp), y SBC (zp), y
STA (zp), vy
b7 zp LAX (zp), vy
Cycle Address-Bus Data-Bus Read/Write
1 PC Op Code Fetch R
2 PC + 1 Direct Offset R
3 DO Absolute Address Low R
4 DO + 1 Absolute Address High R
+1 (%) < AAH, AAL + Y > < Internal Operation > R
5 AA Data Low R/W

(*) Add 1 cycle for indexing across page boundaries, or write

-57 -

http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280
http://visual6502.org/JSSim/expert.html?graphics=f&a=0&steps=22&d=a0d0d310eaeaeaeaeaeaeaeaeaeaeaea1280

Unintended decimal mode

The decimal mode (or “BCD mode”) of the 6502 family is an often ignored artefact of the
instruction set. Since it turned out not to be very useful in many practical situations, many
programmers never use it, which contributes to the state of it being ignored :)

The decimal mode is described here because

* The behaviour of operations on invalid BCD values is officially undocumented. The
following exactly describes the behaviour for all values, valid BCD or not, by giving exact
pseudocode for each instruction.

* Some undocumented instructions inherit dependency on decimal mode from ADC or SBC.
The main part of this document refers to binary mode, the following exactly describes how
these instructions work in decimal mode.

» Last not least because decimal mode is ignored by so many programmers

Like the rest of the document, the following applies specifically to the 6510 MOS chips. 65C02 or
65816 as well as other derivates behave totally different when it comes to details such as flag
behaviour and invalid BCD values.

Test code: CPU/Acid800/cpu_decimal.prg CPU/bclark/decimalmode.prg
CPU/asap/cpu_decimal.prg CPU/64doc/dsbc-cmp-flags.prg
CPU/64doc/dsbc.prg CPU/64doc/dadc.prg

-58-

Decimal mode in a nutshell

The decimal mode is ment to aid in making calculations with BCD encoded values (“packaged”
BCD, one digit per nybble). A BCD encoded value is a hex number with both its upper and lower
nybble equal to 0-9. All other values are invalid BCD values.

When the D flag is set, only (!) the ADC and SBC instructions (and undocumented instructions
derived from them) will work differently than in binary mode.

1.

The ALU works differently than in binary mode:

The low and high nybble of the Akku will be treated as a BCD value, and when performing
operations on it intermediate values will be BCD fixed and carry will be generated on BCD
overflows.

When decimal-correcting a nibble for addition, following rules apply:

if ((nibble > 0x9) | (C* == 1)) { nibble += 6 }
if ((nibble > @xF) { C’" =1 } else { C'" =C" }

When decimal-correcting a nibble for subtraction, following rules apply:
if (C° == 0) { nibble -= 6 }

if (nibble < 6) { C’" =1} else { C'7 = C" }

Thus, $F + $F in decimal mode is $14, not $24. Also, decimal correction can result in
nibbles ranging from $A-$F. For example, $C + $D results in $19 before correction, $1F
after.

The Processor Flags work differently than in binary mode:

C will work as a carry for multi-byte operations as expected (for valid BCD values, for other
values see the rules above)

N and V are set after the high-order nibble is added or subtracted but before it is decimal-
corrected, according to binary rules (see the respective instruction below).

o N will be equal to bit 7 of some intermediate result
oV will used the same logic as in binary mode, but some intermediate results will be used

Z is always set according to binary mode. So it will be set when the non-BCD operation,
before the BCD fixup, would have resulted in $00 - no matter what value the result of the
BCD operation is.

-59 -

example:

SED

CLC

LDA #$80

ADC #$80

P A=$60, C=1, Z=1

invalid BCD

Since only nibble values from 0 to 9 are valid in BCD, it's interesting to see what happens when
using A to F. For example:

$00+$1F=$25 ("ok" since 10 + $OF = 25)

$10+$1F=$35 ("ok")

$05+$1F=$2A (a non-BCD result, "ok" since 5 + 10 + $0F = 20 + $0A)
$OF+$0A=31F ("ok", since $OF + $OA = $0OF + 10)

$OF+$0B=$10 (?!)

... refer to the pseudocode below for details

- 60 -

affected instructions
Surprisingly, only two instructions actually depend on the decimal mode flag: ADC and SBC.

However, all undocumented instructions derived from them are also affected: ARR, RRA, ISC (and
the undocumented $eb SBC).

Test code: CPU/decimalmode/scanner.prg

ADC

Opc. Mnemonic Function Size |Cycles |N|V|-|B|D|I|Z|C
$79 |ADC abs, y A = A + {addr} 3 4 (+1) |olo i 0| X
$7d |ADC abs, x 3 4 (+1) |o|o i 0| x
$6d |ADC abs 3 4 olo i o x
$71 |ADC (zp),y 2 5 (+1) |olo i 0| x
$61 |ADC (zp, X) 2 6 olo i ol x
$75 |ADC zp, X 2 4 olo i ol x
$65 |ADC zp 2 3 olo i ol x
$69 |ADC #imm A=A+ #{imm} 2 2 olo i ol x

Operation: add immediate value from accumulator with carry.

Flags

* The N and V flags are set after fixing the lower nybble but before fixing the upper one. They
use the same logic as binary mode ADC.

» Zflag is not affected by decimal mode, it will be set if the binary operation would become
zero, regardless of the BCD result.

* C flag works as a carry for multi byte operations as expected

Test code: CPU/decimalmode/adc00.prg CPU/decimalmode/adcOl.prg
CPU/decimalmode/adc02.prg CPU/decimalmode/adcl0.prg
CPU/decimalmode/adcll.prg CPU/decimalmode/adcl2.prg

-6l -

pseudocode

/* A = value in Akku, imm = immediate argument, C = carry */

/* Calculate the lower nybble. */
tmp = (A & Ox0f) + (imm & Ox0f) + C;

/* BCD fixup for lower nybble. */
if (tmp > 9) { tmp += 6; }
if (tmp <= 15) {
tmp = (tmp & OxOFf) + (A & OxfO) + (imm & Oxf0O);
}else{
tmp
}

/* Zero flag is set just 1like in Binary mode. */
Z=((A+ imm + C) & Oxff) 2 0 : 1;

(tmp & Ox0f) + (A & OxfO) + (imm & OxfO) + 0x10;

/* Negative and Overflow flags are set with the same logic than in
Binary mode, but after fixing the lower nybble. */

(tmp & 0x80) >> 7;

((A ™ tmp) & 0x80) && !'((A ~ imm) & 0x80);

N
v

/* BCD fixup for higher nybble. */
if ((tmp & 0x1f0) > 0x90) {

tmp += 0x60;
}

/* Carry is the only flag set after fixing the result. */
C = (tmp & OxffO) > OxfO;

A = tmp;

- 62 -

Example: convert a hex digit to ASCII

SED
CMP #$0A
ADC #$30
CLD

This code converts a hex digit 0 to F (i.e. the accumulator $00 to $OF) to $30 to $39 (for 0 to 9) and
$41 to $46 (for A to F). However, this can also be done without using BCD arithmetic, as follows:

CMP #$0A

BCC SKIP

ADC #$66 ; Add $67 (the carry is set), convert $0A to $0F --> $71 to $76
SKIP EOR #$30 ; Convert $00 to $09, $71 to $76 --> $30 to $39, $41 to $46

Which takes 2 more bytes, but the same number of cycles (or one less if the BCC is taken to the
same page).

Example: convert a hex digit to BCD

; A contains O-f (hex)
SED

CLC

ADC #%$00

CLD

; A contains 0-15 (BCD)

Example: Distinguish NMOS 6502 from CMOS 65C02

SED
CLC
LDA #$99
ADC #$01
CLD

This code returns with the Z flag set on a 65C02 (the Z flag is valid), and returns with the Z flag
clear on a 6502 (the Z flag is invalid, and in this case it does not match the result in the
accumulator).

-63 -

SBC (USBC)

Type: Combination of an immediate and an implied command (Sub-instructions: SBC, NOP)

Opc. Mnemonic Function Size | Cycles |N -|B I
$f9 |SBC addr, y |A = A - {addr} 3 4 (+1) |o
$fd |SBC addr, x 3 4 (+1) |o
$ed |SBC addr 3 4 o
$f1 |SBC (zp), y 2 5 (+1) |o
$el |[SBC (zp, x) 2 6)
$f5 |SBC zp, x 2 4 0
$e5 |SBC zp 2 3 o
$E9 |SBC #imm A=A - #{imm} 2 2 o
$EB |SBC #imm 2 2 0

Operation: subtract immediate value from accumulator with carry.

The only difference in SBC's operation in decimal mode from binary mode is the result-fixup.

Decimal subtraction is easier than decimal addition, as you have to make the BCD fixup only when
a nybble overflows. In decimal addition, you had to verify if the nybble was greater than 9. The
processor has an internal "half carry" flag for the lower nybble, used to trigger the BCD fixup.
When calculating with legal BCD values, the lower nybble cannot overflow again when fixing it.

So, the processor does not handle overflows while performing the fixup. Similarly, the BCD fixup

occurs in the high nybble only if the value overflows, i.e. when the C flag will be cleared.

In binary mode, subtraction has a wraparound effect. For example $00 - $01 = $FF (and the carry is
clear). In decimal mode, there is a similar wraparound effect: $00 - $01 = $99, and the carry is clear.

Flags
* The N and V flags are not affected by decimal mode.

» Z flag is not affected by decimal mode, it will be set if the binary operation would become

zero, regardless of the BCD result.

* C flag works as a carry for multi byte operations as expected

Test code: CPU/decimalmode/sbc00.prg CPU/decimalmode/sbcOl.prg

CPU/decimalmode/sbc02.prg CPU/decimalmode/sbclO.prg
CPU/decimalmode/sbcll.prg CPU/decimalmode/sbcl2.prg
CPU/decimalmode/sbcEBOO.prg CPU/decimalmode/sbcEBOl.prg
CPU/decimalmode/sbcEBO2.prg CPU/decimalmode/sbcEB1O.prg
CPU/decimalmode/sbcEB1l.prg CPU/decimalmode/sbcEB12.prg

- 64 -

pseudocode

/* A = value in Akku, imm = immediate argument, C = carry */

/* set flags like in a binary subtraction */

tmp = A - imm - (C ~ 1);

C = (tmp < 0x100) ? 1 : 0O;

N = (tmp & 0x80) >> 7;

Z = ((tmp & Oxff) ==0) 2 1 : 0;

V= (((A " tmp) & Ox80) && ((A ~ imm) & 0x80));

/* Calculate the lower nybble. */
tmp2 = (A & 0x0f) - (imm & Ox0f) - (C ~ 1);
/* BCD correction */
if (tmp2 & 0x10) {
tmp2 = ((tmp2 - 6) & Oxf) | ((A & OxfO) - (imm & OxfO) - 0x10);

} else {
tmp2 = (tmp2 & Oxf) | ((A & OxfO) - (imm & Oxf0O));
}
if (tmp2 & 0x100) {
tmp2 -= 0x60;
}
A = tmp2;

- 65 -

ARR

Type: Combination of an immediate and an implied command (Sub-instructions: AND, ROR)

Opc. Mnemonic Function Size | Cycles [N|V|-|B|D|I|Z|C

$6B |ARR #imm A= (A& #{imm}) / 2 2 2 0|0 i 0|0

note to ARR: part of this command are some ADC mechanisms.

Operation: In Decimal mode the ARR instruction first performs the AND and ROR, just like in
Binary mode. The N flag will be copied from the initial C flag, and the Z flag will be set according
to the ROR result, as expected. The V flag will be set if the bit 6 of the accumulator changed its
state between the AND and the ROR, cleared otherwise.

If the low nybble of the AND result, incremented by its lowmost bit, is greater than 5, the low
nybble in the ROR result will be incremented by 6. The low nybble may overflow as a consequence
of this BCD fixup, but the high nybble won't be adjusted. The high nybble will be BCD fixed in a
similar way. If the high nybble of the AND result, incremented by its lowmost bit, is greater than 5,
the high nybble in the ROR result will be incremented by 6, and the Carry flag will be set.
Otherwise the C flag will be cleared.

pseudocode

/* A = value in Akku, imm = immediate argument, C = carry */
tmp = A & imm; /* perform the AND */

/* perform ROR */
tmp2 = tmp | (C << 8);
tmp2 >>= 1;

N C; /* original carry state is preserved in N */

Z (tmp2 == 0 ? 1 : 0); /* Z is set when the ROR produced a zero result */
/* V is set when bit 6 of the result was changed by the ROR */

V = ((tmp2 ~ tmp) & 0x40) >> 6;

/* fixup for low nibble */
if (((tmp & Oxf) + (tmp & Ox1)) > Ox5) {

tmp2 = (tmp2 & OxfO) | ((tmp2 + Ox6) & Oxf);
}

/* fixup for high nibble, set carry */
if (((tmp & 0xfO) + (tmp & 0x10)) > 0x50) {
tmp2 = (tmp2 & OxOF) | ((tmp2 + Ox60) & Oxf0O);

Cc=1;
} else {
C=0;
}
A = tmp2;

Test code: CPU/decimalmode/arr00.prg CPU/decimalmode/arr0l.prg
CPU/decimalmode/arr02.prg CPU/decimalmode/arrl0.prg
CPU/decimalmode/arrll.prg CPU/decimalmode/arrl2.prg

- 66 -

ISC (ISB, INS)
Type: Combination of two operations with the same addressing mode (Sub-instructions: INC, SBC)

Opc. Mnemonic Function Size | Cycles (N|V|-|B|/D|I|Z|C
$E7 |ISC zp {addr} = {addr} + 1 A=A - {addr} 2 5 olo i ol x
$F7 |ISC zp, x 2 6 olo i ol x
$E3 |ISC (zp, X) 2 8 o|o i ol x
$F3 |ISC (zp), y 2 8 o|o i ol x
$EF |ISC abs 3 6 o|o i ol x
$FF |ISC abs, x 3 7 olo i ol x
$FB |ISC abs, y 3 7 o|lo i ol x

Operation: Increase memory by one, then subtract memory from accumulator (with borrow).

This instruction works exactly like INC followed by SBC, with SBC inheriting the decimal mode as
described above.

Test code: CPU/decimalmode/isc00.prg CPU/decimalmode/iscOl.prg
CPU/decimalmode/isc@2.prg CPU/decimalmode/iscO3.prg
CPU/decimalmode/isclO.prg CPU/decimalmode/iscll.prg
CPU/decimalmode/iscl2.prg CPU/decimalmode/iscl3.prg

-67 -

RRA (RRD)

Type: Combination of two operations with the same addressing mode (Sub-instructions: ROR,
ADC)

Opc. Mnemonic Function Size |Cycles|N|V|-|B|D|I|Z|C
$67 |RRA zp {addr} = ror {addr} A = A adc {addr} 2 5 oo i ol x
$77 |RRA zp, x 2 6 olo i o x
$63 |RRA (zp, X) 2 8 olo i o|x
$73 |RRA (zp), y 2 8 olo i 0| X
$6F |RRA abs 3 6 o|o i o|x
$7F |RRA abs, x 3 7 o|o i o|x
$7B |RRA abs, y 3 7 olo i 0| X

Operation: Rotate one bit right in memory, then add memory to accumulator (with carry).

This instruction works exactly like ROR followed by ADC, with ADC inheriting the decimal mode
as described above.

Test code: CPU/decimalmode/rra00.prg CPU/decimalmode/rra®l.prg
CPU/decimalmode/rra@2.prg CPU/decimalmode/rra®3.prg
CPU/decimalmode/rral@.prg CPU/decimalmode/rrall.prg
CPU/decimalmode/rral2.prg CPU/decimalmode/rral3.prg

- 68 -

Unintended bugs and quirks

This chapter covers the remaining rest of weird and/or possibly undocumented and unintended
things left.

Zeropage addressing modes & page wraps

If you use an indexed-zeropage addressing mode, either direct or indirect, it is not able to leave the
zeropage on page-wraps.

Examples:

LDX #3$01
LDA $FF,X

will fetch from adress $0000 and not $0100.

LDA ($FF).,Y

LDX #$00
LDA ($FF,X)

LDX #$FF
LDA ($00,X)

will all fetch the low-byte from $OOFF and the high-byte from $0000.

Indirect addressing mode & page wraps

If you use the indirect addressing mode, PCH will not be incremented on page wraps. Example:

JMP ($COFF)

will fetch the low-byte from $COFF and the high-byte from $C000.

- 69 -

Appendix

Opcode naming in different Assemblers

Opc

imp|imm| zp |zpx | zpy |izx|izy|abs |abx | aby

ind|rel

KickAss

Acme

ca65

dasm

64tass

SHA $93 $9F AHX SHA SHA SHA AHX, SHA

SHY $9C SHY SHY SHY SHY SHY

SHX $9E SHX SHX SHX SHX SHX

TAS $98B TAS TAS TAS SHS TAS, SHS

LAS $BB LAS LAS LAS LAS LAS, LAE, LDS

-70 -

Combined Examples

negating a 16bit number
Another trick that makes use of the SBX command is the negation of a 16 bit number:

LAX #%$00 ;should be safe, as #%00 is loaded

SBX #1o ;sets carry automatically for upcoming sbc
SBC #hi

; negated value 1is in A/X

One might also think of extending this trick to negate two 8 bit numbers (A, X) at a time.

a smart addition

A second case in which to use SBX is in combination with LAX, for example when doing:

LDA $02
CLC

ADC #$08
TAX

that can be easily substituted by:
LAX $02 ;A
SBX #$f8 ; X

X =M [$02]
(A & X) - -8

So we saved 4 cycles here, as the state of the carry is of no interest for the subtract done by SBX,
which is one of its big advantages. Thus we could also fake an ADD or SUB with that command.
The and-operation is not needed here, but does not harm. If there's use for it, just let A or X be
loaded with the right value for the and-mask.

-71 -

Multiply 8bit * 2 * n with 16bit result

If you want to set up a reference into a table of 8-byte objects use:

LAX Index,y ;4 A X = (index+Y)

AND #%00000111 ;2

STA AddressHi ; 3 store A & %00000111
LDA #%11111000 ;2

SAX AddressLo ; 3 store X & %11111000

; = 14 cycles

Which is a hell of a lot faster than multiplying by 8, and just means storing the values in the index
in a funny bit order (43210765)

-T2 -

6 sprites over FLI

The '6 sprites over FLI' routine used in 'Darwin' is based on the following code. It uses unintended
Read-Modify-Write opcodes since they have a side-effect on the accumulator. This is needed
because there is no time to load it explicitly with LDA #. 'Finding this combination with usable
side-effects took 6 months (duration, not effort) and the game to find a second solution has been
rightfully named FLI-Sudoku :)'

First column in the comments show cycles, second the actual value written, and third the effective

bits.

; A=$A0 X=%$36 Y=$%21
; $d018=%$1f $dd00=%$3d $dd02=%$36

STA
SRE
STY
ASL
SAX
STY
STA
SRE
STA
RRA
STA
SLO
STX
STX
STA
SRE

$DO11
$DDO2
$D0O11
$D018
$DO11
$DDO2
$D0O11
$D018
$DO11
$DDO2
$D0O11
$D018
$DO11
$DD0O2
$D0O11
$D018

(o) T = N S A T > T 2 I ~ S« TR ~ N ~ N ~ Y o) B N o) B S

A0
1b
21
3f
32
21
BB
1f
A4
90
35
3f
36
36
3F
1f

(20)
(03)
(21)
(38)
(22)
(61)
(23)
(18)
(24)
(00)
(25)
(38)
(26)
(02)
(27)
(18)

A:A0

A:BB

A:A4

A:35

A:3F

-73 -

This block is repeated for every 8 lines of the graphics area, with every second block using $20 as a
start value for the accumulator like this:

; A=%$20 $d018=%$1f $dd02=$36

STA $DO11 ;4 20 (20)
SRE $DD0O2 ;6 1b (03) A:20 -> 3B
STY $DO11 ;4 21 (21)
ASL $D0O18 ;6 3f (38)
SAX $D011 ;4 32 (22)
STY $DD0O2 ;4 21 (01)
STA $DO11 ;4 3B (23)
SRE $D018 ;6 1f (18) A:3B -> 24
STA $DO11 ;4 24 (24)
RRA $DDO2 ;6 90 (00) A:24 -> B5
STA $DO11 ;4 B5 (25)
SLO $D0O18 ;6 3f (38) A:B5 -> BF
STX $D0O11 ;4 36 (26)
STX $DD0O2 ;4 36 (02)
STA $DO11 ;4 BF (27)
SRE $D018 ;6 1f (18) A:BF -> AO

; A=$A0 $d018=$%$1f $dd02=$36

-74 -

Blackmail FLI

In 1989 ASP of Blackmail released “FLI Graph v2.2”, which for the first time included a FLI
display routine exploiting that in the first 3 columns of a FLI picture the VICII would fetch the
colour-ram colour from “open” bus, with the result that whatever opcode comes after the write to
$§DO011 in the FLI displayer will define said colour.

The following shows the extracted code snippets used for creating the various colours in the first 3
columns, including a small fix that makes it possible to use all 16 colours.

First let’s outline what this display routine needs to do:
» for each line use 23 cycles (each line is a badline)
* in each line change the vram base address (via $d018)
* in each line force a badline (via $d011) at the same cycle within the line

* in each line alter the colour ram colour in the first 3 column by placing a specific opcode
right after the store to $d011

* in each line change the background colour ($d021)

The first half of code for each line is always the same, first the X register is preloaded with the
value that will be stored to $d011. The same value will also be used for indirect-x indexed
addressing in some variants of the second half of the code. After that the Akku is loaded with the
value used for $d018, then $d018 is written, and finally $d011 is stored. These 4 opcodes take 13
cycles total:

(3) a6 xx ldx zp ; $69/%6b/%6d/%6f/$71/%$73/%75/%77
; — loaded value is $b8,%b9..%bf
(2) a9 xx lda # <screen> ; original code uses $08..%78 here.

; however if we use $0f-$7f instead,
; the LAX#imm used in one variant
; of the second half will always
; work as intended, and for all 16
; colours
(4) 8d 18 dO sta $d018
(4) 8e 11 dO stx $doO1l1

After this follows a different part of code, depending on the colour that should be used for the
colour ram in the first 3 columns. This was achieved by using one of the opcodes in the $aX row of
the opcode matrix, which are all loads. The opcode used selects the colour fetched for the colour
ram, the value fetched by this opcode selects the colour stored to $d021. This part of the code alwas
takes 10 cycles.

=75 -

0: black as colour ram colour

(2) a0 xx ldy # <background colour>
(4) 8c 21 dO sty $do21

(2) ea nop

(2) ea nop

1: white as colour ram colour
(6) al xx lda (zp,Xx) ; ((background colour << 1) + $59)

; - ((line & 7) | $b8)
(4) 8d 21 dO sta $d021

2: red as colour ram colour

(2) a2 xx ldx # <background colour>
(4) 8e 21 dO stx $do21

(2) ea nop

(2) ea nop

3: cyan as colour ram colour
(6) a3 xx lax (zp,x) ; ((background colour << 1) + $59)

; - ((line & 7) | $b8)
(4) 8f 21 dO sax $%$d021

4: violet as colour ram colour

(3) a4 xx 1dy zp ; <(background colour << 1) + $59>
(4) 8c 21 dO sty $d021
(3) 24 24 bit $24

- 76 -

5: green as colour ram colour

(3) a5 xx lda zp
(4) 8d 21 dO sta $dO21
(3) 24 24 bit $24

6: blue as colour ram colour

(3) a6 xx ldx zp
(4) 8e 21 dO stx $d021
(3) 24 24 bit $24

7: yellow as colour ram colour

(3) a7 xx lax zp
(4) 8f 21 dO sax $d021
(3) 24 24 bit $24

8: orange as colour ram colour

(2) a8 tay

; <(background colour << 1) + $59>

; <(background colour << 1) + $59>

; <(background colour << 1) + $59>

(2) a0 xx ldy # <background colour>

(4) 8c 21 dO sty $d021
(2) ea nop

9: brown as colour ram colour

(2) a9 xx lda # <background colour>

(4) 8d 21 do sta $d021
(2) ea nop
(2) ea nop

-77 -

a: L.red as colour ram colour

(2) aa

(2) a2 xx
(4) 8e 21 dO
(2) ea

tax

ldx # <background colour>
stx $d021

nop

b: d.grey as colour ram colour

(2) ab xx

(4) 8f 21 do
(2) ea
(2) ea

lax # <background colour>

sax $d021
nop

nop

c: m.grey as colour ram colour

(4) ac xx 03
(4) 8c 21 do
(2) ea

ldy abs
sty $d021
nop

’

the original code uses
A=$08,%$18...%78 for the
values written to $d011,
which makes this rely on
bit0-2 of the “magic
constant” being set.
However if we use A=$0f,
$1f...%$7f instead, that
takes the constant out
of the equation and this
lax#imm will always work

for all 16 colours.

; $03b0 + <background colour>

-78 -

d: L.green as colour ram colour

(4) ad xx 03 1da abs ; $03b0 + <background colour>

(4) 8d 21 d0 sta $d021
(2) ea nop

e: 1.blue as colour ram colour

(4) ae xx 03 1dx abs ; $03b0 + <background colour>

(4) 8e 21 dO stx $d021
(2) ea nop

f: L.grey as colour ram colour

(4) af xx 03 1lax abs ; $03b0 + <background colour>

(4) 8f 21 dO sax $d021
(2) ea nop

last not least, for the above code snippets to work, the following tables are used:

; values read by indirect x indexed loads

; values read by absolute loads ($03b0 + <background colour>)

O3b0 bO bl b2 b3 b4 b5 b6 b7 b8 b9 ba bb bc bd be bf

: addresses for indirect x indexed loads ($03b0...%03bf)
; every other value used for zp loads ($b0,$bl...$bf)

; second half also used as $d011 values ($b8, $b9...%$bf)
0059 DbO 03 bl 03 b2 03 b3 03 b4d 03 b5 03 b6 03 b7 03
0069 b8 03 b9 03 ba 03 bb 03 bc 03 bd 03 be 03 bf 03

-79 -

References
Everything in this document has been verified and is backed up by various test programs:

» VICE test-programs: https://sourceforge.net/p/vice-emu/code/HEAD/tree/testprogs/

* Emulator Test-suite by Wolfgang Lorenz

* Test programs by Poitr Fusik
* First CSDb "Unintended OpCode coding challenge": http://csdb.dk/event/?1d=2417
* Blackmail “FLI Graph v2.2”
* Spectipede tape loader (ANE#imm usage)

e Turrican 3 scroll routine (ANE#imm usage)

Various older documents were used to create the first merged version of this document:

e http://www.oxyron.de/html/opcodes02.html

e http://www.ataripreservation.org/websites/freddy.offenga/illopc31.txt
e http://www.ffd2.com/fridee/docs/6502-NMOS.extra.opcodes
* http://visual6502.org/wiki/index.php?title=6502_Unsupported Opcodes

And some more bit of info were nicked from these places:

* http://www.atariage.com/forums/topic/168616-I1xa-stable/#entry2092077
e http://www.pagetable.com/?p=39

* cbmhackers mailing list

Last not least, some example code snippets were borrowed from elsewhere too:

* http://codebase64.org/doku.php?id=base:decrease_x_register_by_more_than_1

* http://codebase64.org/doku.php?id=base:some words about the anc opcode

* http://codebase64.org/doku.php?id=base:advanced_optimizing

Please don’t mind the few unattributed anecdotal quotes in the text (printed in italics) — The text
was not ment for publication initially and i forgot who posted what. The respective authors are
probably present in the following list afterall:

- 80 -

http://codebase64.org/doku.php?id=base:advanced_optimizing
http://codebase64.org/doku.php?id=base:some_words_about_the_anc_opcode
http://codebase64.org/doku.php?id=base:decrease_x_register_by_more_than_1
http://www.pagetable.com/?p=39
http://www.atariage.com/forums/topic/168616-lxa-stable/#entry2092077
http://visual6502.org/wiki/index.php?title=6502_Unsupported_Opcodes
http://www.ffd2.com/fridge/docs/6502-NMOS.extra.opcodes
http://members.chello.nl/taf.offenga/illopc31.txthttp://www.ataripreservation.org/websites/freddy.offenga/illopc31.txt
http://www.oxyron.de/html/opcodes02.html
http://csdb.dk/event/?id=2417
https://sourceforge.net/p/vice-emu/code/HEAD/tree/testprogs/

Greets and Thanks

0xF/Taquart

* Bitbreaker/Oxyron

e ChristopherJam

* Color Bar

* Count Zero/Cyberpunx
* Cyberbrain/Noname

* Graham/Oxyron

« JAC!

» Kabuto/Latency

* Kirill/Plush

* Marco Baye

* Mist/R.O.L.E.

* Ninja/The Dreams

* Peiselulli/TRSI"Oxyron
* pwsoft

* Segher

* Se7en/The Solution

* Soci/Singular*VICE Team
e SvOlli/XayaX

* TLR/VICE Team

* Unseen/VICE Team

* Wilfred Bos

* Wolfgang Lorenz

* WoMo

... and all contributors to Codebase64, Visual6502, VICE, and last not least the dark knights
behind the scenes who shall remain unmentioned - you know who you are.

- 81 -

Wanted

This document could still be improved and extended, contributions welcome! If you want to help
send your contributions to groepaz@gmx.net !

* While the dependency on RDY of ANE#imm and LAX#imm can be verified on the C-64 by
test programs, it can not be explained 100% properly (yet). More investigation by someone
who is able to read die shots may help with that.

* 'unstable address hi byte' opcodes' page boundary crossing and RDY behaviour needs to be
verified on more CPUs.

* Some opcodes, such as ARR, should also be tested on a disk drive while data is being read.
* More example code snippets would be great (sharing is caring!)
* Examples of interesting (ab)use of the decimal mode

* Experienced 6502 coders from other platforms (Atari 2600/800, Apple II, VIC-20, Plus 4
...) who port the test cases and check them on other 6502 variants and platforms.

-82 -

mailto:groepaz@gmx.net

History

e December 24™, 2019 (V0.94) — added more detailed description of flags behaviour for some
opcodes, updated some ANE/LAX details, fixed description of carry flag for ARR, more
precise description of the SHA/SHX/SHY/TAS unstable behaviour, added references to new
tests to SHA/SHX/SHY/TAS, updated TAS example code, added more details to decimal
mode BCD fixup and flags behaviour, added cross references to the decimal mode chapter to
opcodes that depend on the decimal flag, added chapter about bugs and quirks, added
description of “Blackmail FLI” to combined examples, added more example code snippets
so each opcode has at least one, added some missing references to test programs, Added
alternative Mnemonics found in AEGs patched Turbo Assembler, sorted greetings
alphabetically

e December 24" 2018 (V0.93) — Added description on CPU flags naming, flag usage is a bit
more detailed in tables, added some details on decimal mode, In some descriptions flipped
the order of sub instructions around to match the logical order, added missing note on the
RDY line dependency of ANE and LAX, last not least all sections have proper headers now.

e December 24" 2017 (V0.92) — Added a couple unusual Mnemonics used by the Atari-
centric MAD-Assembler, use “Andale Mono” instead of “Aerial Mono” - the later would
produce broken ligatures. A few formatting fixes. Fixed description of the page-crossing
anomaly of “unstable address high byte” group.

e December 24", 2016 (V0.91) — Fixed some typos, added a few more examples.

e December 24" 2015 (V0.9) — Fixed cosmetical issues (justification), fixed link(s) in
references, added notes on ANE/LAX#mm usage, added chapter about unintended
addressing modes, added references to test code from 64doc.txt, added note on decimal flag
for RRA and ISC, fixed error in ANE example, added examples for RLA and LAS
(including great explanation by Color Bar, thanks!)

e December 24", 2014 — First public release

* November 2014 — Finally found the time to clean up this document and showed it to a bunch
of people for proof reading (unreleased)

* some time 2013 — Started pasting together various information for personal use

The Truth is out there

-83 -

	Preface
	Scope of this Document
	Intended Audience
	License
	What you get
	Naming Conventions
	Address-Mode Abbreviations
	Mnemonics
	Processor Flags

	Unintended Opcodes
	Overview
	Types
	Combinations of two operations with the same addressing mode
	Combinations of an immediate and an implied command
	Combinations of STA/STX/STY
	Combinations of STA/TXS and LDA/TSX
	No effect
	Lock-up

	Stable Opcodes
	SLO (ASO)
	Example: Multibyte left shift and load leftmost byte

	RLA (RLN)
	Example: scroll over a background layer
	Example: multiply by 3, 5, 7, 10 …

	SRE (LSE)
	Example: 8bit 1-of-8 counter

	RRA (RRD)
	Example: noise LFSR

	SAX (AXS, AAX)
	Example: store values with mask
	Example: update Sprite Pointers

	LAX
	Example: load A and X with same value

	DCP (DCM)
	Example: decrementing loop counter
	Example: decrementing 16bit counter

	ISC (ISB, INS)
	Example: incrementing loop counter
	Example: increment indexed and load value

	ANC (ANC2, ANA, ANB)
	Example: implicit enforcement of carry flag state
	Example: remembering a bit

	ALR (ASR)
	Example: right shift and mask
	Example: fetch 2 bits from a byte
	Example: add offset depending on LSB

	ARR
	Example: rotating 16 bit values
	Example: load register depending on carry
	Example: shift zeros or ones into accumulator

	SBX (AXS, SAX, XMA)
	Example: decrement X by more than 1
	Example: decrement nibbles
	Example: apply a mask to an index

	SBC (USBC, USB)
	LAS (LAR)
	Example: cycle an index within bounds

	NOP (NPO, UNP)
	NOP (DOP, SKB)
	NOP (TOP, SKW)
	Example: acknowledge IRQ

	JAM (KIL, HLT, CIM, CRP)
	Example: stop execution

	Unstable Opcodes
	'unstable address high byte' group
	SHA (AXA, AHX, TEA)
	Example: SAX abs, y
	Example: SAX (zp), y

	SHX (A11, SXA, XAS, TEX)
	Example: STX abs, y

	SHY (A11, SYA, SAY, TEY)
	Example: STY abs, x

	TAS (XAS, SHS)
	Example: SAX abs, y with SP=A & X

	'Magic Constant' group
	ANE (XAA, AXM)
	Example: clear A
	Example: A = X AND immediate
	Example: read the 'magic constant'

	LAX #imm (ATX, LXA, OAL, ANX)
	Example: clear A and X
	Example: load A and X with same value
	Example: read the 'magic constant'

	Unintended addressing modes
	Absolute Y Indexed (R-M-W)
	Zeropage X Indexed Indirect (R-M-W)
	Zeropage Indirect Y Indexed (R-M-W)

	Unintended decimal mode
	Decimal mode in a nutshell
	invalid BCD
	affected instructions
	ADC
	Example: convert a hex digit to ASCII
	Example: convert a hex digit to BCD
	Example: Distinguish NMOS 6502 from CMOS 65C02

	SBC (USBC)
	ARR
	ISC (ISB, INS)
	RRA (RRD)

	Unintended bugs and quirks
	Zeropage addressing modes & page wraps
	Indirect addressing mode & page wraps

	Appendix
	Opcode naming in different Assemblers
	Combined Examples
	negating a 16bit number
	a smart addition
	Multiply 8bit * 2 ^ n with 16bit result
	6 sprites over FLI
	Blackmail FLI

	References
	Greets and Thanks
	Wanted
	History

