
C64 Debugger v0.64.56 manual
.

C64 Debugger

by SLAJEREK/SAMAR

C64 Debugger (C) 2016-2017 Marcin Skoczylas
Vice (C) 1993-2017 The VICE Team

This is Commodore 64 code and memory debugger that works in real time.
It is quick prototyping tool where you can play with Commodore 64 machine
and its internals.

C64 Debugger embeds VICE v3.1 C64 emulation engine created by The VICE Team.

See a promo video here: https://youtu.be/_s6s7qnXBx8

documentation layout by fieserWolF / Abyss-Connection

1

https://youtu.be/_s6s7qnXBx8

C64 Debugger v0.64.56 manual
.

Table of Contents
1 Preface..4

1.1 Installation..4
1.2 Beer Donation..4
1.3 Facebook page..4

2 Global keyboard shortcuts..5
3 Debugger elements...7

3.1 Disassembly view..7
3.2 Data dump view...8
3.3 Memory map view:...8
3.4 Commodore 64 screen..8
3.5 SID state view..9
3.6 VIC state view..9
3.7 VIC Display screen..10

3.7.1 VIC Display screen keys...11
3.8 VIC Editor screen...12

3.8.1 VIC editor shortcuts..14
3.9 Monitor screen...16
3.10 Breakpoints..16

3.10.1 Breakpoints screen...16
3.10.2 Breakpoints screen keys..17
3.10.3 Breakpoints file...17

4 Invoking the debugger..18
4.1 Command line options...18
4.2 Code labels (symbols)...19
4.3 Watches...19
4.4 KickAss debug symbols...19

4.4.1C64Debugger - KickAss format...19
4.5 JukeBox playlist and automated tests...22

4.5.1 Global settings variables..22
4.5.2 Action object variables..23

5 Appendix...25
5.1 Known bugs...25
5.2 To do..25
5.3 Thanks for testing..25
5.4 Beer Donation..26
5.5 Contact...26
5.6 License...26
5.7 Acknowledgements..26

5.7.1 VICE License..26
5.7.2 Commodore ROMs..27
5.7.3 Libraries..27

5.8 Change log...29

2

C64 Debugger v0.64.56 manual
.

Index of Tables
Table 1: global keyboard shortcuts..6
Table 2: disassembly view...7
Table 3: data dump view..8
Table 4: VIC display screen buttons...11
Table 5: VIC display screen keys...11
Table 6: VIC editor screen layers...12
Table 7: VIC editor screen: raw text export blocks..14
Table 8: VIC editor shortcuts..15
Table 9: monitor screen instructions..16
Table 10: breakpoint types...16
Table 11: breakpoints screen keys...17
Table 12: breakpoints file entries...17
Table 13: command line options..18
Table 14: KickAss debug symbols tags...21
Table 15: JukeBox playlist global settings variables..22
Table 16: JukeBox playlist entry variables...23
Table 17: JukeBox playlist action object variables...24
Table 18: libraries...28
.

3

C64 Debugger v0.64.56 manual 1 Preface
.

1 Preface

1.1 Installation
On Windows you need to install Visual Studio C++ 2008 Redistributable package.
On Windows 10 it is advised to run executable in Windows 7 compatibility mode.
Windows binary is now signed. Thanks to Yugorin/Samar for certificate donation!

On Linux you need GTK3 libraries.

1.2 Beer Donation
If you like this tool and you feel that you would like to share with me some beers, then you can use
this link: http://tinyurl.com/C64Debugger-PayPal

Or send me some Bitcoins using this address: 1G3ZRT7j27QycHnkoo176t9j5a2J49fsXc

Donations will help me in development, thanks!

1.3 Facebook page
Join C64 Debugger Facebook page here: http://tinyurl.com/C64Debugger-Faceboo

4

http://tinyurl.com/C64Debugger-Facebook
http://tinyurl.com/C64Debugger-PayPal

C64 Debugger v0.64.56 manual 2 Global keyboard shortcuts
.

2 Global keyboard shortcuts
Alt+Enter Toggle fullscreen (MS Windows only)

Ctrl+F1 Show only C64 screen

Ctrl+F2 Show C64 disassembler, memory map and data dump

Ctrl+F3 Show C64 disassembler with hex codes, memory map, data dump and
VIC state

Ctrl+F4 Show C64 and 1541 disk disassembler and memory maps

Ctrl+F5 Show states of chips

Ctrl+F6 Show C64 disassembler and a big memory map

Ctrl+F7 Show C64 and 1541 disk disassembler

Ctrl+F8 Show Monitor console and debugging tools

Ctrl+Shift+F1 Show zoomed C64 screen.

Ctrl+Shift+F2 Show cycle-exact debugging tools with C64 screen zoom and code
labels

Ctrl+Shift+F4 Show VIC Display "lite" screen

Ctrl+Shift+F5 Show VIC Display screen

Ctrl+Shift+F6 Show VIC Editor screen

TAB Change focus to next view

Shift+TAB Change focus to previous view

F9 Show Main menu screen

Ctrl+B Show Breakpoints screen

Ctrl+Shift+S Show Snapshots screen

Ctrl+T Mute sound On/Off

Ctrl+W Replace memory dump view with watches view

Ctrl+[Set slower emulation speed

Ctrl+] Set faster emulation speed

Ctrl+8 Insert D64 file

Ctrl+Shift+8 Detach D64 file

Ctrl+O Load PRG file

Ctrl+L Reload PRG & Start

Ctrl+0 Attach cartridge

Ctrl+Shift+0 Detach cartridge

Ctrl+Shift+A Toggle auto-load first PRG from inserted disk

Ctrl+F Cartridge freeze button

Ctrl+R Soft reset C64

Ctrl+Shift+R Hard reset C64

5

C64 Debugger v0.64.56 manual 2 Global keyboard shortcuts
.

Ctrl+Alt+R Reset 1541 Disk drive

Ctrl+Shift+D Detach everything

Ctrl+P Limit emulation speed On/Off (warp mode)

Ctrl+Y Use keyboard arrows as joystick On/Off, Right Alt to fire

F10 Pause code or run to next instruction (step)

Ctrl+F10 Step to next line (step over JSR)

Shift+F10 Run one CPU cycle

F11 Run/continue emulation

Ctrl+M Toggle data memory map/dump taken directly from RAM or as-is with
I/O and ROMs selected by $0001

Ctrl+E Toggle show current raster beam position

Ctrl+S Store snapshot to a file

Ctrl+D Restore snapshot from a file

Shift+Ctrl+1, 2, 3, ..., 6 Quick store snapshot to slot #1,#2,#3, ..., or #6

Ctrl+1, 2, 3, ..., 6 Quick restore snapshot from slot #1,#2,#3, ..., or #6

Ctrl+U Dump C64's memory to file

Ctrl+Shift+U Dump 1541 Drive's memory to file

Ctrl+Shift+E Save current screen data to file

Ctrl+BACKSPACE Clear memory markers

Ctrl+Shift+P Save C64 screenshot and sprite bitmaps to PNG files

F7 Browse attached disk image

F3 Start first PRG from disk image

Ctrl+; Select next code symbols segment

Ctrl+' Select previous code symbols segment

Table 1: global keyboard shortcuts

6

C64 Debugger v0.64.56 manual 3 Debugger elements
.

3 Debugger elements

3.1 Disassembly view

Mouse Click on
memory address

Add/remove breakpoint

` (~ tilde key) Add/remove breakpoint

Arrow Up/Down Scroll code one instruction up/down

Page Up/Page Down or
Shift+Arrow
Up/Shift+Arrow Down

Scroll code by $100 bytes up/down

Space Toggle tracking of code display by current PC

Enter Enter code editing mode (assemble)

[or] Scroll code one byte up/down

Arrow Left/Right If not editing code: follow code jumps and branches using Right-Arrow
key, and move back with Left-Arrow key. When argument is a memory
address then Memory Dump view will be scrolled to that address
If editing code and hex values visible: change edited hex value

CTRL+G <addr> Move cursor to specific address (f.e. CTRL+G EA31)

CTRL+J JMP to current cursor's address (change CPU PC)

Mouse wheel Scroll code (faster with Shift pressed)

Table 2: disassembly view

.

7

C64 Debugger v0.64.56 manual 3.2 Data dump view
.

3.2 Data dump view

Mouse Click on hex
value

Select hex value

Double Mouse Click on
hex value

Scroll disassemble view to selected address

Arrow keys Move editing cursor

Page Up/Page Down or
Shift+Arrow
Up/Shift+Arrow Down

Scroll code by $100 bytes up/down

Enter or 0-9 or A-F Start editing value

Ctrl+Mouse Click Scroll Disassembly to code address that stored that value

Alt+Shift Change CBM charset

Ctrl+K Change colour mode on/off for sprites/characters

Ctrl+G <addr> Move cursor to specific address (f.e. CTRL+G 0400)

Ctrl+V Paste hex codes from clipboard into memory. Simple separators are
parsed, also the text can contain addresses as 4 hex digits

Table 3: data dump view

3.3 Memory map view:
Memory map shows current values of memory cells. Ctrl+M switches bank to RAM. Each memory
cell value is mapped into RGB or Gray or None. In RGB mode red are values from 0 to 85, green
are values from 85 to 170 and blue are values from 170 to 255. In Gray mode all values are
mapped into grayscale colors.

Memory access:
• white shows current PC
• blue marks read access
• red marks write access

You can change colours to ICU-standard (read marked by green) in Settings.

You can Mouse Click inside memory map to scroll data dump view to a clicked memory address.
You can double Mouse Click to scroll disassemble view to a memory address under cursor. You
can Ctrl+Mouse Click to scroll Disassembly to code address that stored value under cursor.

You can zoom-in using mouse wheel and move around by holding right mouse click (Windows,
Linux, MacOS) or use mulitouch gestures such as pinch zoom and scroll using two fingers (MacOS
only). You can select desired control behaviour in Settings.

3.4 Commodore 64 screen
All keys are mapped as original Commodore 64 keyboard. RUN+STOP is mapped to ESC key. Left
Control key is not mapped and reserved for keyboard shortcuts.

8

C64 Debugger v0.64.56 manual 3.4 Commodore 64 screen
.

Right Control is mapped into C64 Control key. RESTORE is not mapped, but you can chang this
in Settings.

When joystick is turned on then you can control selected ports using arrow keys, and right-alt as
fire.

3.5 SID state view
You can click waveforms to mute SID channels. Detected musical notes are displayed, these are
based on standard 440Hz A4 notation.

3.6 VIC state view
This view shows state of VIC registers. You can lock colors using Mouse Left Click, or change
them using Mouse Right Click, these will be reflected in previews like Memory Dump or VIC
Display view.

9

C64 Debugger v0.64.56 manual 3.7 VIC Display screen
.

3.7 VIC Display screen
The VIC Display screen is like an X-Ray for the VIC chip. Whole frame is recorded and you can
access state of VIC and CPU for each cycle of the frame. It can be activated by Ctrl+Shift+F5. VIC
Display renders exact state of VIC for selected cycle. As you know, a lot of effects are using tricks
of the VIC chip, so it will not show the C64 screen in its entirety, as it is not meant to.
It will always show a screen how it would be rendered for selected cycle of the VIC chip.

You can just move mouse cursor over the VIC Display frame and see how VIC registers impact
rendering of the C64 screen. Note that status of CPU registers and VIC state view is marked in
light-red color background, this is to indicate that state is locked and shows selected raster cycle.
The disassembly code is moved to the place where raster beam was executing code in the frame.
Space bar changes disassembly code lock. Also, when you move the cursor over VIC Display, the
memory dump view cursor points to address which is under mouse cursor.

When you click on the VIC Display you can lock cursor and then move it with keyboard arrow keys,
holding Shift will increase the step. You can unlock the cursor by pressing Space Bar or by Mouse-
Clicking on locked cursor.

There are buttons to control the VIC Display, you can see what are current values of VIC bank,
screen, bitmap etc. and you can force and change them by clicking on values: green color means it
is a current state for selected cycle, red is when you forced the selection. Do not forget, that if you
select something making it red, then the VIC Display will show your selection, not what is currently
going on on the screen.

10

C64 Debugger v0.64.56 manual 3.7 VIC Display screen
.

button function

Scroll will switch if VIC scroll register should be applied to VIC Display position. When
code is opening side borders then applying the scroll register may make the
display jump a lot, so you can select if you need this behaviour.

Bad Line shows a bad line condition when text is red, switching it on will display lines that
are in bad line condition.

Border changes if side border should be shown. It has three states: no border, viewable
area with border, full frame scan.

Grid changes if a grid should be displayed.

Sprites changes if sprites graphics should be rendered in the VIC Display.

Frames changes if frames around sprites should be visible.

Break adds VIC raster breakpoint, the text is in red when a selected line has already the
breakpoint set.

Show PC for informs in which auto-scroll code disassembly mode we are, you can click on the
mode and change it to other mode (Raster / Screen / Bitmap / Colour).

VIC Display records state of VIC each cycle in the frame and with the mouse cursor you can
see what is in the frame. The X key changes what we "look" at: where was the
code in a given cycle (Raster mode) or where the code saved the pixel in memory
(Raster / Screen / Bitmap / Colour). For Screen / Bitmap / Colour modes the
memory view under C64 screen will be moved to address that holds the value at
cursor. For charset mode the memory view cursor will point to a charset and
definition of char under cursor.

Table 4: VIC display screen buttons

You can Right-Click on C64 Screen in right top to replace it to a zoomed raster view.

3.7.1 VIC Display screen keys

Arrow keys Move locked cursor

Shift+Arrow keys Move locked cursor in large steps

` (~ tilde key) Toggle VIC raster breakpoint

L Lock/Unlock mouse cursor

Space Bar Lock/Unlock Disassemble auto-scroll code

X Select next auto-scroll code mode

R Select auto-scroll code to Raster

S Select auto-scroll code to Screen (Text)

B Select auto-scroll code to Bitmap

C Select auto-scroll code to Colour

Table 5: VIC display screen keys

.

11

C64 Debugger v0.64.56 manual 3.8 VIC Editor screen
.

3.8 VIC Editor screen
The VIC Editor screen is for displaying and editing graphics in real time. All painting is done in a
live C64 emulation and is immediately reflected in C64 RAM and VIC chip.

Layers window shows available layers, default layers are:

Unrestricted you can paint on this layer in so-called hires unrestricted mode, thus using C64
colors without any limits

Sprites this layer is used for painting on all visible sprites in this frame. These are virtual
sprites, so in particular de-multiplexed sprites. Note, that displaying of virtual
sprites from this layer is not implemented yet, thus the "V" button changes only if
you can paint on this layer. However, you can see these sprites as they are
rendered in the C64 Screen, so actually you can paint on them and see changes.

C64 Sprites these are sprites that are in a raster line under cursor, just the same like in VIC
Display view.

Display this is the same VIC Display which works exactly the same way, thus exact state
of VIC for selected cycle under cursor is rendered.

Reference this works like Unrestricted but has full palette and images imported into that layer
are displayed as-is. Painting on that layer is disabled by default, you can paint only
when this layer is selected.

C64 Screen this is the C64 Screen as it was rendered by VIC, note that if emulation is paused,
then painting on this layer will not have immediate affect - the VIC must render the
screen first to have changes visible.

Table 6: VIC editor screen layers

There are “V” buttons near layers names, these set visibility of the layer.

You can select the layer by clicking on it:
• When layer is selected, all painting is done on that selected layer, even if it is not visible.
• When no layer is selected, then painting is made from top-to-bottom, it is driven to a layer

that has higher priority first, that is visible and has a pixel under selected x/y mouse position
which is inside that layer (for example if there are no sprites under mouse cursor, then
sprites layer will be skipped and painting will be done on C64 bitmap).

Painting depends on selected mode. In all modes you are free to paint, however if you exceed
available number of colors the painting will be blocked. To un-block and force color replace you can
hold Ctrl key (this can be configured in Settings).

The replacement color will be selected and it will be replaced:
• in Hires Bitmap this will be color under cursor in 8x8 char,
• in Multi-Color Bitmap this will be color that is less-used in 8x8 char (has least number of

pixels),
• on Sprite this will always be individual sprite color ($D027+).

Painting with RMB On Sprite will always use background color ($D021).

12

C64 Debugger v0.64.56 manual 3.8 VIC Editor screen
.

You can paint in dither mode by holding Alt key: pixel colors are alternating between LMB and
RMB. When you paint first pixel, a dithering grid will be created, and by holding Alt key this grid will
be used for painting. The dithering grid will be reset when you release the Alt key.

Sprite window shows current selected sprite. You can lock selected sprite by clicking mouse on
sprite with Ctrl+Shift. Then you can select color to use for paiting by clicking on the color in Sprite
window or by pressing (0, Shift+1, Shift+2, Shift+3).
To change locked color just select a new color from palette, this will replace the color of locked
Sprite. Note that $D021, $D025 and $D026 are shared with other sprites. If you not select color in
Sprite window, then painting on Sprite will try to use selected color from the Palette, if color is not in
available colors then the painting will be blocked and to un-block and force color replace use the
Ctrl key.

You can change multicolor, horizontal or vertical stretch by clicking buttons.

You can change positions of Sprites the same way, just lock/select a Sprite by pressing
Ctrl+Shift+Mouse Click on that sprite, and then use Arrow Keys to move that selected sprite (Arrow
Key Left/Right/Up/Down).

Note, that changing colors, positions and settings of Sprites is quasi-intelligent:
in current frame's code that was run, places of LDA/LDX/LDY and STA/STX/STY pairs are found
for sprite colors or positions and values of LDA's are replaced based on current raster position.
Thus, you can write your own display and colors multiplexer code, run it and when you change
colors of sprites the code in C64 RAM will be replaced accordingly, even if you use Sprite
multiplexing.

Charset window shows current charset, you can select char and use it for painting in text modes.

It is possible to import PNG and convert it to current mode, hires/multicolor bitmap and hires text
modes are supported. PNG must have resolution of 320x200 or 384x272.
Colors are matched to nearest C64 colors (nearest neighbour). For bitmap modes colors in 8x8 are
set based on most used color values in 8x8, thus first a color that has largest number of
occurrences in 8x8 char is found and it is replaced for converting in that 8x8 char, then in multicolor
the another one, etc. If sprites are present in the screen, colors are matched to colors selected in
the sprite and pixels are converted, note that no automatic color replacing is possible at this
moment. The 384x272 resolution includes also borders, so if you have sprites in side border the
pixels will be converted accordingly.

Note, that a workflow with sprites is that you should have some init PRG procedure that sets
position of sprites. The converter is quasi-intelligent, thus is trying to find places of LDA/STA for
colors in the current frame.

You can also import KLA (Bitmap Multi-Color), ART (Bitmap Hires), DD (Bitmap Hires) and export
to KLA, ART or raw text depending on selected mode.

Note: when you export to raw text it contains these blocks:

13

C64 Debugger v0.64.56 manual 3.8 VIC Editor screen
.

$000-$3E7 Current character video memory (screen). For example values stored in $0400-
$07E7.

$3E7-$7CE Color memory (values stored in $D800-$DBE7)

$7CF Background color (value stored in $D021)

Table 7: VIC editor screen: raw text export blocks

Zooming and panning of the canvas is performed using mouse, you can use Mouse Scroll for
zooming and hold Space Bar for panning. Also, you can Mouse Right-Click on Preview Window to
quickly move the painting area to selected position. When you zoom-in deeply then numbers such
as pixel addresses and values will be also shown.

3.8.1 VIC editor shortcuts
(LMB=left mouse button, RMB=right mouse button)

Ctrl+N Create new picture and setup C64 for painting

LMB, RMB Paint using selected color

Alt+LMB, Alt+RMB Paint dither

Ctrl+LMB or Ctrl+RMB Force painting / replace color

Shift+LMB Get color at cursor as LMB color

Shift+LMB Get color at cursor as RMB color

X Exchange LMB/RMB colors

0 Set LMB color from $D021 color

Shift+0 Get color at cursor as background ($D021) color

RMB on Preview Window Move display

Space Bar (hold in main display) Move display

Mouse Scroll Zoom in/out the canvas

Shift+Mouse Scroll Quickly zoom in/out the canvas

[or] Select Circle Brush size

Ctrl+[or Ctrl+] Select Rectangle Brush size

/ Change Preview Window scale

' Show cursor pointer in Preview Window

` (tilde key) Select next visible layer

12345678QWERTYUI Select color

Shift+1, Shift+2, Shift+3 Select sprite painting color num ($D025, $D027+,
$D026)

F Show/hide all windows

D Show/hide preview window

P Show/hide colors palette

14

C64 Debugger v0.64.56 manual 3.8.1 VIC editor shortcuts
.

C Show/hide character set window

S Show/hide sprite window

L Show/hide layers window

Ctrl+G Show/hide sprite frames

Ctrl+Shift+Mouse Click Lock/Select sprite

Arrow Left/Right/Up/Down Move selected sprite

Ctrl+Backspace Clear screen

Ctrl+Z Undo

Ctrl+Shift+Z Redo

Ctrl+S Save image in VIC Editor (*.vce) format

Ctrl+O Load/Import image (vce, png, kla, art, dd)

Ctrl+Shift+E Export image to kla/art/raw text

Ctrl+B Toggle top bar with icons

ESCAPE Back to C64 Debugger

Table 8: VIC editor shortcuts

15

C64 Debugger v0.64.56 manual 3.9 Monitor screen
.

3.9 Monitor screen
You can use these instructions in code monitor:

HELP shows help

DEVICE C / D / 8 set current device (C64/Disk/Disk)

F <from address> <to address> <value> fill memory with value

C <from address> <to address>
<destination address>

compare memory with memory

H <from address> <to address> <value>
[<value> ...]

compare memory with values

T <from address> <to address>
<destination address>

copy memory

L [PRG] [from address] [file name] load memory (with option from PRG file)

S [PRG] <from address> <to address>
[file name]

save memory (with option as PRG file)

D [NH] <from address> <to address> [file
name]

disassemble memory (with option NH without hex
codes)

G <address> jmp to address

Table 9: monitor screen instructions

.

3.10 Breakpoints
Breakpoint stops the execution of code depending on some state and situation.

3.10.1 Breakpoints screen
In the Breakpoints screen (Ctrl + B) you can click using mouse, or Enter or Space key to enable or
disable monitoring of selected type of the breakpoint.
New value can be added by selecting "...." either by moving the cursor with the arrow keys or
clicking using mouse.

These are possibilities:

VIC / CIA / NMI stops when selected interruption occurs

CPU PC the code will stop as the processor will start to perform instruction from
selected address

MEMORY stops when there will be attempt to write to the memory of the set value,
for example: 4FFF <= 3F will stop code when there will be attempt to
write to the cells 4FFF value less or equal to 3F. To break at any write
access you can use <= FF

RASTER stops when raster reaches the set line value

Table 10: breakpoint types

16

C64 Debugger v0.64.56 manual 3.10.1 Breakpoints screen
.

Breakpoints CPU type PC can also be set in the disassembler view by clicking the mouse cursor
on the address or by pressing the ` (tilde) key.

The same applies to 1541 Drive breakpoints on right side of the screen.

3.10.2 Breakpoints screen keys

Arrow keys Move around

Enter or Spacebar Toggle value or start editing breakpoint

Table 11: breakpoints screen keys

3.10.3 Breakpoints file
Breakpoints file stores information about breakpoints, addresses and values.
Possible entries are:

break xxxx - break when PC reaches
address xxxx

Example: break 3FFF

breakraster xxx - break when raster
reaches line number xxx

Example: breakraster 40

breakmem xxxx oo yy - break on
memory write to address xxxx when

expression oo yy is true. Possible operators oo are:
==, !=, <, <=, >, >=
Example: breakmem D018<=FF

breakvic break on VIC interrupt

breakcia break on CIA interrupt

breaknmi break on NMI interrupt

setbkg xxxx yy fake marker, when PC reaches address xxxx then
background colour register ($D020/$D021) is set to
value yy, you can mix this type of breakpoint with
normal "break" to also stop code execution

Table 12: breakpoints file entries

All entries are not case sensitive. Please check KickAssembler documentation, section 9.5: Writing
to User Defined Files.

17

C64 Debugger v0.64.56 manual 4 Invoking the debugger
.

4 Invoking the debugger

4.1 Command line options

-help show help

-layout <id> start with layout id <1-12>

-breakpoints <file> load breakpoints from file

-symbols <file> load symbols (code labels)

-watch <file> load watches

-wait <ms> wait before performing tasks

-prg <file> load PRG file into memory

-d64 <file> insert D64 disk

-tap <file> attach TAP/T64

-crt <file> attach cartridge

-jmp <addr> jmp to address, for example jmp x1000, jmp $1000 or
jmp 4096

-autojmp automatically jmp to address if basic SYS is detected

-alwaysjmp always jmp to load address of PRG

-autorundisk automatically load first PRG from inserted disk

-unpause force code running

-snapshot <file> load snapshot from file

-soundout <"device name" | device
number>

set sound out device by name or number

-playlist <file> load and start jukebox playlist from json file

-clearsettings clear all config settings

-pass pass parameters to already running instance
if instance is not running a new one will be spawned

Table 13: command line options

Other command line options are the same as selected emulation engine (thus see Vice
documentation for additional command line options).

18

C64 Debugger v0.64.56 manual 4.2 Code labels (symbols)
.

4.2 Code labels (symbols)
You can load a symbols file wit code lables via -symbols <file> command line option. Also, if near
loaded PRG a file with "labels" file extension is found then it is loaded automatically. Two file
formats are accepted, a standard Vice code labels format and 64Tass compatible file format.

Vice code labels file format example:
al C:d019 .vic2_int_reg

Note, that label name's leading dot is skipped.

64Tass labels file format example:
vic2_int_reg = $D019

4.3 Watches
Watches view is a simple way to display selected values in memory with a label.
You can replace the memory dump view by watches view with Ctrl+W key. The feature is simple
display of hex value stored in associated memory address, but this will be expanded in future to
allow also different data representations.

To add watches you can do that only via external file that you can load from a command line.

The format of file is simple, and there are two formats accepted.

Simple watches format example:
d019 vic2_int_reg

64Tass-labels compatible format example:
vic2_int_reg = $D019

For example watches file please refer to:
https://sourceforge.net/p/c64-debugger/code/ci/master/tree/Examples/example.watch

4.4 KickAss debug symbols
With Mads Nielsen (Slammer/Camelot) we created integration based on Stein Pedersen's idea.
This was written with great help of Mads Nielsen:

4.4.1 C64Debugger - KickAss format
Here is the basic format. To make it easier to read I have given a param named 'values' that
explains the values of the comma separated lists.

<C64debugger version="1.0">
 <Sources values="INDEX,FILE">
 0,KickAss.jar:/include/autoinclude.asm
 1,/Users/Mads/Code/C64CodeRepos/C64Code/atari/lib/atarifile_4bank.h
 <Sources/>

 <Segment name="BANK1" values="START,END,FILE_IDX,LINE1,COL1,LINE2,COL2">

19

https://sourceforge.net/p/c64-debugger/code/ci/master/tree/Examples/example.watch

C64 Debugger v0.64.56 manual 4.4.1C64Debugger - KickAss format
.

 <Block name="Program">
 $1000,$1002,2,16,9,16,11
 <Block/>
 <Block name="Vectors">
 $1ffa,$1ffb,2,11,3,11,7
 $1ffc,$1ffd,2,12,9,12,13
 $1ffe,$1fff,2,13,9,13,13
 <Block/>
 <Segment/>

 <Segment name="BANK2" values="START,END,FILE_IDX,LINE1,COL1,LINE2,COL2">
 <Block name="Program">
 $1000,$1000,2,28,3,28,5
 $1001,$1001,2,29,3,29,5
 $1002,$1002,2,30,3,30,5
 $1003,$1004,2,35,3,35,5
 $1005,$1006,2,36,3,36,5

 <Block/>
 <Block name="Vectors">
 $1ffa,$1ffb,2,23,3,23,7
 $1ffc,$1ffd,2,24,9,24,13
 $1ffe,$1fff,2,25,9,25,13
 <Block/>
 <Segment/>

 <Labels values="SEGMENT,ADDRESS,NAME">
 Default,$d011,vic2_screen_control_register1
 </Labels>

 <Watches values="SEGMENT,ADDRESS,ARGUMENT">
 Default,$3000
 Default,$2001,2,hex8
 BANK2,$3000,,text
 </Watches>

 <Breakpoints values="SEGMENT,ADDRESS,ARGUMENT">
 BANK1,$1000,nmi
 BANK2,$1003,
 <Breakpoints/>
<C64debugger/>

So everything is inside a <C64debugger> tag with a version number. Inside are different tags:

tag description

<C64debugger> <C64debugger> tag with a version number

<Sources> There will always be one <Sources> tag with all the source files and their
indices.

<Segment> There will be one or more <Segment> tags - one for each segment.
Segments contains zero or more <Block> tags and inside these are the
usual debug data.

20

C64 Debugger v0.64.56 manual 4.4.1C64Debugger - KickAss format
.

<Breakpoints> There will always be one <Breakpoints> tag. It contains one line for each
breakpoint. First arg is the segment it is defined in (so if you turn on and
off segments you can switch breakpoints on an off too). Second argument
is the address it is defined at (You will not need it in eg. .break "nmi", but it
is always there). Third argument is whatever the user writes in the .break
argument and might be empty. So .break "nmi" and .break "cia" will give
nmi and cia.

<Labels> <Labels> tag adds a label at address. First argument is the segment
name, second argument is the address and last argument is label text.

<Watches> <Watches> is similar to labels but it will appear in watches view. First
argument is the segment name, second argument is the address, then
third argument is number of values to display, and fourth argument
declares a representation which can be:
hex8, hex16, hex32, or simply h, h8, h16, h32 is hex representation of
value interpreted as 8, 16 or 32 bits.
signed8, signed16, signed32, or simply s8, s16, s32 is a signed decimal
representation of value interpreted as 8, 16 or 32 bits.
unsigned8, unsigned16, unsigned32 or simply u8, u16, u32 is an unsigned
decimal representation of value interpreted as 8, 16 or 32 bits.
text signifies text representation.

Table 14: KickAss debug symbols tags

Please note that representation and number of values are not yet displayed in Watches view, this
will be updated in upcoming version. Now, the Watches view displays only one hex 8-bit value.

21

C64 Debugger v0.64.56 manual 4.5 JukeBox playlist and automated tests
.

4.5 JukeBox playlist and automated tests
JukeBox playlist is a way to automate things in the C64 Debugger. The idea is that you can write a
JSON file in which actions and settings for the jukebox are set.
Examples of usage include:

• simply playing demos from a playlist, with fade out/fade in transitions, good for the big
screen!

• set warp speed on, load demo, set warp off, automatically press space on notes, then
dump memory in selected frames.

• load game, automatically move joystick, etc.

Note, that all timings selected are in seconds or milliseconds, but are re-calculated to VIC
synchronization frames, so the timings will be always exact and synced to VIC refresh. The frame
number depends on selected system (PAL, NTSC). Calls to move on with transitions, dumping
memory and other actions are always synchronized to VIC and are performed at end of each VIC
frame.

JSON format is as follows:
1. All "global" settings, such as if fast boot kernal patch should be included.
2. Entries for each file load.
3. Each entry has its own settings (such as file path) and actions (such as key strokes,

joystick movements, memory dumps, etc).

For example file please refer to:
https://sourceforge.net/p/c64-debugger/code/ci/master/tree/Examples/jukebox-win32.json

4.5.1 Global settings variables

FastBootPatch=true/false should kernal be patched with fast boot patch

DelayAfterReset=real number pauses all actions after machine reset for selected
number of milliseconds

ShowLoadAddress=true/false shall the load address be displayed on screen?

FadeAudioVolume=true/false should the audio be faded out/in on transitions?

SetLayout=integer number set layout number on start

ShowPopup=true/false should popup with demo details be displayed on
transition?

PopupFadeTime=real number duration time of fade out/in popup

PopupVisibleTime duration time of popup visibility

Playlist=[] array of playlist entries

Table 15: JukeBox playlist global settings variables

In Playlist array there are entries of files that will be loaded, in order. Each entry has its own
seetings and actions.

22

https://sourceforge.net/p/c64-debugger/code/ci/master/tree/Examples/jukebox-win32.json

C64 Debugger v0.64.56 manual 4.5.1 Global settings variables
.

Playlist Entry variables:

Name=string name of demo/program to be displayed in popup

FilePath=string path to a file to be loaded (can be d64, prg, crt or snap)

ResetMode=hard/soft which reset mode should be used before loading this
file

AutoRun=true/false should file be auto run (auto run means: perform reset,
load file and run)

RunFile=integer number which entry from D64 directory should be loaded

WaitTime=real number for how long this entry should be played, wait time
before transition to next entry

DelayAfterReset=real number pauses all actions after machine reset for selected
number of milliseconds

FadeInTime=real number time of fade in transition at start of this entry

FadeOutTime=real number time of fade out transition at end of this entry

Actions=[] array of actions to be performed during this entry

Table 16: JukeBox playlist entry variables

In Actions array there are actions that will be performed during playing of this entry.

4.5.2 Action object variables

DoAfterDelay=real number Wait selected number of seconds and perform action.

KeyDown=string (one ASCII character) Push and hold key on C64 keyboard. The key is ASCII
character.

KeyUp=string (one ASCII character) Key up and do not hold anymore a key on C64
keyboard. The key is ASCII character.

KeyDownCode=integer number Push and hold key on C64 keyboard. The key is
selected by its ASCII code. For list of special scan
codes refer to:
https://sourceforge.net/p/c64-debugger/code/ci/master/
tree /MTEngine/Engine/Core/SYS_KeyCodes.h

KeyUpCode=integer number Key up and do not hold anymore a key on C64
keyboard. The key is selected by its ASCII code.

Joystick1Down=string
or Joystick1Up=string
or Joystick2Down=string
or Joystick2Up=string

Push selected joystick axis (Down) or release joystick
axis (Up). The axis name is a string of these values:
fire, up, down, left, right, sw, nw, se, sw

WarpMode=true/false Set warp mode On/Off

DumpC64Memory=string Dump C64 Memory to a file specified by path

DumpDiskMemory=string Dump Disk drive Memory to a file specified by path

DetachCartridge=true/false Detach (remove) cartridge from slot

SaveScreenshot=string Save Screenshot as PNG to file specified by path

23

https://sourceforge.net/p/c64-debugger/code/ci/master/tree/MTEngine/Engine/Core/SYS_KeyCodes.h
https://sourceforge.net/p/c64-debugger/code/ci/master/tree
https://sourceforge.net/p/c64-debugger/code/ci/master/

C64 Debugger v0.64.56 manual 4.5.2 Action object variables
.

ExportScreen=string Export Screen as kla/art/raw text to file specified by
path. The file extension will be added automatically
based on current C64 display mode

Shutdown Shutdown the C64 Debugger (Quit program)

Table 17: JukeBox playlist action object variables

24

C64 Debugger v0.64.56 manual 5 Appendix
.

5 Appendix
Step over JSR works in a way that a temporary PC breakpoint is created in next line. Code will be
stopped when PC hits that breakpoint address, in most situations just after returing from JSR. Note
that if code never returns from JSR this breakpoint will still be "valid".

You can also drag & drop file into C64 Debugger window on MacOS & Windows. Depending on
selected option in Settings the file can be auto-started, also from disk image file.

You can browse the contents of attached disk image by pressing F7 key, and run the first PRG by
F3 key. Note that if C64 Screen is selected then these keys are normally sent to the C64. Thus to
let these key shortcuts work you need to first un-select the C64 Screen.

5.1 Known bugs
When snapshot is loaded then selected settings are not updated in the Settings menu (such as
SID type, C64 machine model, attached disks, etc).

Loading NTSC snapshot into PAL machine or vice-versa is not supported and will hard reset the
C64.

It is not possible to zoom Drive 1541 memory map.

Clicking Drive 1541 memory map does not properly set selected value in memory dump view.

Command line arguments are passed to VICE. VICE complains that arguments that have been
parsed by C64 Debugger are not OK.

On some window managers flavours in Linux system open/save file dialogs are behaving
incorrectly.

When you move a Sprite in VIC Editor and Sprite is on top of other Sprite they will 'pile up', also
there are no means to select Sprite below a Sprite... this is not ready yet and is planned for next
release.

5.2 To do
• Add memory map zooming for Drive 1541.
• Add working on files directly instead of C64 memory (file adapter is ready), to view/edit files

directly.
• Add custom layouts with layout editor.
• Add PAL CRT emulation.
• Add Save Screenshot keyboard shortcut.

5.3 Thanks for testing
• Mr Wegi/Elysium - valuable suggestions and cartridge knowledge
• ElfKaa/Avatar

25

C64 Debugger v0.64.56 manual 5.3 Thanks for testing
.

• Don Kichote/Samar
• Isildur/Samar
• Yugorin/Samar
• Scan/House
• Dr.J/Delysid
• Brush/Elysium
• Ruben Aparicio
• 64 bites
• Stein Pedersen
• Mads Nielsen

5.4 Beer Donation
If you like this tool and you feel that you would like to share with me
some beers, then you can use this link: http://tinyurl.com/C64Debugger-PayPal

5.5 Contact
If you have ideas or found a bug feel free to contact me at slajerek@gmail.com

5.6 License
C64 Debugger is (C) Marcin Skoczylas, aka Slajerek/Samar.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA

The ROM files are Copyright (C) by Commodore Business Machines.

5.7 Acknowledgements
Portions of this Software may utilize the following copyrighted material,
the use of which is hereby acknowledged:

5.7.1 VICE License
VICE, the Versatile Commodore Emulator

Copyright C 1998-2008 Andreas Boose

26

mailto:slajerek@gmail.com

C64 Debugger v0.64.56 manual 5.7.1 VICE License
.

Copyright C 1998-2008 Dag Lem
Copyright C 1998-2008 Tibor Biczo
Copyright C 1999-2008 Andreas Matthies
Copyright C 1999-2008 Martin Pottendorfer
Copyright C 2000-2008 Spiro Trikaliotis
Copyright C 2005-2008 Marco van den Heuvel
Copyright C 2006-2008 Christian Vogelgsang
Copyright C 2007-2008 Fabrizio Gennari
Copyright C 1999-2007 Andreas Dehmel
Copyright C 2003-2005 David Hansel
Copyright C 2000-2004 Markus Brenner

Copyright C 1999-2004 Thomas Bretz
Copyright C 1997-2001 Daniel Sladic
Copyright C 1996-1999 Ettore Perazzoli
Copyright C 1996-1999 André Fachat
Copyright C 1993-1994, 1997-1999 Teemu Rantanen
Copyright C 1993-1996 Jouko Valta
Copyright C 1993-1994 Jarkko Sonninen

Copyright C 1999-2017 Martin Pottendorfer
Copyright C 2007-2017 Fabrizio Gennari
Copyright C 2009-2017 Groepaz
Copyright C 2010-2017 Olaf Seibert
Copyright C 2011-2017 Marcus Sutton
Copyright C 2011-2017 Kajtar Zsolt
Copyright C 2016-2017 AreaScout
Copyright C 2016-2017 Bas Wassink

This program is free software; you can redistribute it and/or nodify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program; if
not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
1307 USA

5.7.2 Commodore ROMs
The ROM files embedded in the source code are Copyright C by Commodore Business Machines.

5.7.3 Libraries

libjpeg is a free software library written for JPEG image compression.

libjson Copyright 2010 Jonathan Wallace. All rights reserved.

27

C64 Debugger v0.64.56 manual 5.7.3 Libraries
.

libpng version 1.5.2 March 31, 2011 Copyright (c) 1998-2011 Glenn Randers-Pehrson
(Version 0.96 Copyright (c) 1996, 1997 Andreas Dilger)
(Version 0.88 Copyright (c) 1995, 1996 Guy Eric Schalnat, Group 42, Inc.)

LodePNG version 20140801 Copyright (c) 2005-2014 Lode Vandevenne

minizip Version 1.01e, February 12th, 2005 Copyright (C) 1998-2005 Gilles Vollant

mtrand Coded by Takuji Nishimura and Makoto Matsumoto.
Ported to C++ by Jasper Bedaux 2003/1/1 (see
http://www.bedaux.net/mtrand/).
The generators returning floating point numbers are based on a version by
Isaku Wada, 2002/01/09
Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura, All
rights reserved.

utf8 Copyright 2006 Nemanja Trifunovic

zlib Copyright (C) 1995-2006, 2010 Mark Adler

portaudio Copyright (c) 1999-2002 Ross Bencina and Phil Burk

pthread-win32 https://www.sourceware.org/pthreads-win32/

mman-32 https://github.com/witwall/mman-win32

libclipboard Copyright (c) 2016 Jeremy Tan
https://github.com/jtanx/libclipboard

Table 18: libraries

28

https://github.com/jtanx/libclipboard
http://www.bedaux.net/mtrand/

C64 Debugger v0.64.56 manual 5.8 Change log
.

5.8 Change log
v0.64.56

• Added: PALette palette.
• Added: CHARSET mode in VIC Display
• Added: Joystick keys can be defined as regular keyboard shortcut keys
• Added: New actions to JukeBox scripting: save screenshot, export screen to kla/art/raw,

shutdown the C64 Debugger
• Added: Edit values of registers in VIC/SID/CIA/VIA state views
• Added: Quick disassemble mouse scroll with Shift pressed
• Added: Copy (Ctrl+C) and Paste (Ctrl+V) assembly line as text in Disassembly view
• Added: Copy (Ctrl+C) and Paste (Ctrl+V) value (or address with Shift pressed) in Memory

Dump view
• Added: Create new Picture in VIC Editor using Ctrl+N
• Added: Export and import Charset in VIC Editor
• Added: Export and import Sprite in VIC Editor
• Added: New unrestricted image Reference layer in VIC Editor
• Added: TAP/T64 load and Tape menu in Settings (thanks to Pontus Berg and Josefin

Svensson for reminding me this!)
• Added: Loading sources and debug info from new *.dbg file format. You can view

diassembled code together with original source code in new Ctrl+Shift+F3 view. Thanks to
Mads Nielsen for his valuable suggestions on the integration of the debug info file format in
his KickAssembler. Idea by Stein Pedersen.

• Added: Atari 800/65XE emulator aka 65XE Debugger (early draft)
• Added Linux: New compile Makefile by Kuba Skrzypnik, Eclipse is no more needed to

compile sources!
• Changed: Cycler layout (Ctrl+Shift+F2) now contains also memory dump
• Changed: Ctrl+O starts a generic file dialog to open any supported file
• Bug Fixed: Drive CPU status was not displayed in Monitor view when Drive device was

selected (thanks to Javier Martin for bug report)
• Bug Fixed: Markers are cleared automatically after PRG load (thanks to Alex Goldablat for

bug report)
• Bug Fixed: Zooming in memory map was sometimes blocked
• Bug Fixed: Command line -help option now properly displays message box on Windows

(thanks to Timsa Uotila for bug report)
• Bug fixed: Painting on vertically-stretched multicolor sprite caused crash (thanks to

Isildur/Samar for bug report)

v0.64.2
• Bug fixed: VIC Sequencer state was displayed reversed (thanks to Mattias Weidhagen for

bug reporting)
• Bug fixed: Muting a channel in Stereo/Triple SID state view did not work correctly
• Bug fixed: Automatic loading of *.watch file sometimes caused lock of the debugger (thanks

to Yugorin/Samar for bug reporting)
• Bug fixed: Automatic focus for C64 screen was not triggered (thanks to Isildur/Samar for

bug reporting)
• Bug fixed: Crash when ReSID emulation was selected and Run SID emulation option was

set to No (thanks to Isildur/Samar for bug reporting)

29

C64 Debugger v0.64.56 manual 5.8 Change log
.

• Bug fixed: When PRG was selected from command line and disk was attached with autorun
set then the file entry from D64 was started instead of PRG (thanks to Isildur/Samar for bug
reporting)

• Added: Saving VIC Display state with VCE file (thanks to Isildur/Samar for suggestion)

v0.64 (2017/12/24), X-Mas release!
• Added: JukeBox playlist feature! Allows to play your favourite demos from playlist with

transitions, run automated tests of your games and programs with keystrokes and joystick
movements, run your productions in Warp mode and then do a memory dump after
selected time... and more!

• Added: BASIC-compatible auto run
• Added: Setting CPU registers value in registers view
• Added: Setting for Stereo and Triple SID, showing registers of additional SIDs in SID state

view
• Added: Switch off SID emulation in Settings
• Added: Mute audio using Ctrl+T shortcut, also select switch mute mode between just

muting the volume, or switching SID emulation off when muted, selectable in Settings
(thanks to Mojzesh/Arise and Wegi/Elysium for the help and idea)

• Added: Support of 64tass code labels
• Added: Automatically load Vice code labels if file with *.labels extension is found near

loaded PRG
• Added: Watch selected memory locations (Ctrl+W), automatically load *.watch file with

PRG. Simple for now, update soon!
• Added: Change menus colour theme and disassembly colour theme, new menus colour

themes by Mojzesh/Arise and Isildur/Samar
• Added: Export sprite raw data with screen save
• Added: Show multi-colour charset in Vic Editor
• Added: Setting to adjust focus border width
• Change: You can now save current screen using Ctrl+Shift+E keyboard shortcut in any

view, not only Vic Editor
• Change: Saving current screen to file also exports sprites data and charset data
• Change: Shift+0 in Vic Editor sets both $D020 and $D021 colors
• Bug fixed: On Windows it was not possible to enter opcodes in the disassembly pane due

to keycodes mismatch (thanks to Scan/House for bug report)
• Bug fixed: On MacOS accent keys that needed double keystroke on ISO keyboards were

not recognised (thanks to Ruben Aparicio for bug report and great help with fixing)
• Bug fixed: Importing key map from file caused corruption in key map editor (thanks to

Ruben Aparicio for bug report)

v0.62 (2017/08/02), released at Riverwash demo party
• Added: MIDI support, the usual -midi* command line flags work as they normally do in VICE

itself. Thanks to David Hogans for help
• Added: Select audio out device via command line (-soundout <"device name" | device

number>)
• Added: Quick workaround for Linux open/save file dialogs problems on broken GTK, you

can select custom open/save file dialogs in Settings/UI (no UTF support yet, sorry!)
• Bug fixed: Loading PRG while waiting after automatic Reset for previous PRG load caused

Fatal Error
• Bug fixed: Painting on vertically-stretched sprite caused crash
• And other overall tweaks here and there.

30

C64 Debugger v0.64.56 manual 5.8 Change log
.

v0.60 (2017/06/23), released at Silesia 8 demo party.
See a promo video here: https://youtu.be/_s6s7qnXBx8

• Added: Integrated Vice 3.1 emulation engine
• Added: new VIC Display screen (Ctrl+Shift+F5) and VIC Display lite (Ctrl+Shift+F4)
• Added: new VIC Editor screen (Ctrl+Shift+F6). Simple for now, more features on the way!
• Added: show music notes in SID State view
• Added: you can Ctrl+Click on Memory Dump or Memory Map view to scroll Disassembly to

code address that stored that value
• Added: you can follow code jumps and branches in Dissasembly view using Right-Arrow

key, and move back with Left-Arrow key, when argument is a memory address then Data
Dump view will be scrolled to that address

• Added: colors are shown in VIC State, also you can lock (Left Click) or force (Right Click)
these colors in previews

• Added: show code cycles in some Disassembly views
• Added: setting to completely stop SID emulation when in warp mode
• Added: setting to select nearest or billinear interpolation mode for rendering of the C64

Screen in Settings
• Added: setting to select VIC colors palette in Settings
• Added: reset only disk drive by Ctrl+Alt+R
• Added: zoomed full screen in Ctrl+Shift+F1
• Added: save C64 screenshot and sprite bitmaps to PNG files by Ctrl+Shift+P
• Added: key shortcut to browse and run PRG files from attached disk image (F7)
• Added: key shortcut to auto run first PRG file from the attached disk image (F3)
• Added: setting and command line option to auto load and run first PRG from inserted disk
• Added: key shortcut to switch auto run from disk (Ctrl+Shift+A)
• Added: setting and command line option to always jmp to loaded PRG address even if no

Basic SYS is detected
• Added: setting and command line option to un-pause debugging code when PRG is loaded
• Added: setting to reset or hard reset C64 before starting PRG
• Added: key shortcut to detach disk image (Ctrl+Shift+8), cartridge (Ctrl+Shift+0) and

everyting (Ctrl+Shift+D)
• Added: you can drag & drop file into C64 Debugger window on MacOS & Windows
• Added: mouse cursor is hidden when window is full screen, and only C64 Screen is shown

(in Ctrl+F1 view)
• Change: default key mapping of OS '\' key changed to C64 key '='
• Change: default VIC colors palette changed to colodore
• Change: default SID model changed to 8580 FastSID
• Change: in Disassembly view you can move cursor to current address -1 by [key, and to

address +1 by] key
• Change: Settings menu is now split into sub-menus
• Bug fixed: processor status flags were not correctly updated for N and Z flags (thanks to

Flavioweb/Aura^Hokuto Force for reporting)
• Bug fixed: when loading PRG additional space in Basic SYS was not properly parsed giving

wrong start address (thanks Yugorin/Samar for reporting)
• Bug fixed: when SYS is hidden by $00 trick the address was not properly parsed (thanks

Yugorin/Samar for reporting)
• Bug fixed: stored folders paths for D64/PRG/CRT were not properly set in macOS Sierra

open/save dialogs

31

https://youtu.be/_s6s7qnXBx8

C64 Debugger v0.64.56 manual 5.8 Change log
.

• Bug fixed: the PC breakpoint did not stop code execution when it was placed on first
instruction after manual jump or IRQ, now it's properly trapped (thanks to 64bites for
reporting)

• Bug fixed: idle CIA timers were not properly updated when emulation was paused or in
single stepping mode (thanks Scan/House Designs for reporting)

• Bug fixed: code labels are properly placed in disassemble view after PRG file load
• Bug fixed: drive memory breakpoints were not correctly set
• Bug fixed: menu items for resetting the C64 were not properly handled
• Bug fixed: some another not done key mappings on Windows reported by Isildur/Samar ;#)
• Windows binary is now signed. Thanks to Yugorin/Samar for donation!!

v0.56
• Bug fixed: Loading of PRG is now always to RAM (skipping I/O), not based on value of $01

as previously (thanks DKT/Samar for spotting this)
• Bug fixed: Displaying Sprite bit states in compact VIC (Ctrl+F3) was showing repeated

states 1-4 for 5-8 and Sprite Exp states were displayed only for Sprite #1 (thanks
Scan/House for a bug report)

• Bug fixed: When no output audio device was found the debugger was closed silently on
startup throwing error only to system console. Now additional error message box is
displayed that audio device is missing (thanks Isildur/Samar for a bug report)

• Added: "pass" command line option to pass parameters to already running instance
• Added: S PRG function in monitor console to save memory dump as a PRG file
• Added: L PRG function in monitor console to load memory from a PRG file
• Added: D function in monitor to disassemble code, also to text file
• Added: Setting to adjust fade out speed of memory markers
• Added: Setting to customise grid lines and raster cross colors
• Added: Setting to show debugger window always on top
• Added: Paste (Ctrl+V) hex data from system clipboard into RAM in memory dump view

v0.54 (2016/09/03), released at Riverwash Demoparty 2016
• Bug fixed: S command in monitor saves last address byte inclusive as in VICE monitor
• Bug fixed: Memory map was showing wrong values in $0000 and $0001
• Bug fixed: Audio output is reactivated when emulation speed is higher than 10% (thanks

Scan/House for bug report)
• Bug fixed: Cycle-by-cycle screen refreshing tweaks. 8 additional pixels for each VIC cycle

were painted and sometimes one not needed additional line in last VIC cycle was copied,
that caused over-painting of whole spurious background line to a current raster line

• Bug fixed: Breakpoints loaded from command line were not displayed in disassembly view
• Bug fixed: Memory breakpoints less & greater were checked inversely
• Bug fixed: Windows: shifted keys are again working (damn Windows WinAPI hell!). For C=

+ Shift press first Shift and then Left ALT
• Changed: When hex codes are not visible in disassembly view then all ???s are displayed

as hex codes
• Added: Keyboard shortcuts to control emulation speed (CTRL+[and CTRL+])
• Added: Option in settings to switch on/off the PC-execute-aware disassemble (switch to

use straight disassemble as in any monitor instead of PC-execute-aware)
• Added: New cycler-view (Ctrl+Shift+F2) for cycle-exact code debugging, with VIC states,

code labels and zoomed C64 screen (view suggested by Brush/Elysium)
• Added: Loading and viewing Vice labels by new command line option: -vicesymbols <file-

name>, visible in cycler-view.

32

C64 Debugger v0.64.56 manual 5.8 Change log
.

• Added: autojmp command line option
• Added: New 0-cycle background value action for breakpoint. In breakpoints file you can set

a background for PC address with "setbkg <addr> <value>"

v0.52 (2016/06/25)
• Bug fixed: Key "7" was not mapped to C64 (thanks Wolfram Heyer for spotting this)
• Bug fixed: Basic pointers $2D-$32, $AE/$AF were initialised when PRG is loaded and basic

SYS is detected. That caused some decrunchers to not work properly when PRG was
started automatically (thanks Michael Tackett for reporting and iAN CooG for help)

• C64 keyboard mapping screen in Settings
• Mapping keyboard shortcuts screen in Settings
• Mapping of C64 memory to a file (read/write via mmap on MacOS/Linux, read-only on

Windows)
• Select Audio Output device in Settings
• Apply fast boot kernal patch in Settings
• When CPU is in jam state then CTRL+R will start running emulation automatically (thanks

Marc Schoe Nefeld for suggestion)
• Hi-res sprites in VIC state are rendered with their colours if colour data rendering is

selected (change with CTRL+K)
• Emulation Speed parameter in Settings
• Shortcut to Clear memory markers
• Save memory state & access markers to a CSV file (suggested by Wackee)

v0.5 (2016/06/04)
• First public release at "Stary Piernik 11", Torun 2016

v0.41
• PAL/NTSC machine model select
• Fixed fullscreen problem on Windows

v0.4
• Memory map zoom and better marking of code-execute.
• Bug fixes.

v0.32
• Bug fixes.

v0.31
• Step over JSR (Ctrl+F10), thanks Mr Wegi/Elysium for suggestion.
• Execute-aware code disassemble.
• Quick store & restore snapshots ([Shift+] Ctrl+1,2,...)
• UI tweaks suggested by Isildur.

v0.3
• Mark code execution (thanks Mr Wegi/Elysium for suggestion)
• Code monitor with basic commands DEVICE, F, C, H, T, L, S, G. (thanks DKT for

suggestion)

v0.22

33

C64 Debugger v0.64.56 manual 5.8 Change log
.

• Additional Settings: choose SID model and SID engine, ICU colours scheme, mute SID on
pause, select joystick port, detach everything

• Store: default folders per file type, last screen layout
• Settings are stored and restored on startup
• Linux tweaks
• Bug fixes

v0.21 (2016/04/30)
• Cartridge bank peek bug fixed, found by Mr Wegi/Elysium (thanks!)
• SID state bug fixed and waveform views added
• All data is now embedded into executable
• Code optimizations

v0.2 (2016/04/23)
• Cartridge support and memory peek
• 1541 drive breakpoints and debugging
• Added to command line: 'wait', 'layout', 'cartridge'
• Bug fixes (thanks Isildur)
• Overall UI tweaks

v0.11 (2016/04/17)
• VICE chips state is displayed (including sprites)
• Some UX changes suggested by eLK/Avatar (thanks!)

v0.10 (2016/04/10)
• First Vice integration preview

v0.03 (2016/03/30) aka "Samar meeting version"
• Bug fixes.

v0.025 (2016/03/26)
• Tweaked disassemble code functionality
• Added: VIC/SID/CIA/Disk state screen
• Added: assemble mnemonics is possible in code view by pressing ENTER key
• Added: Linux GTK3 open/save dialogs

v0.024 (2016/03/19)
• Cleaned engine. Code refactoring
• Mangled keyboard shortcuts a bit
• Added: mouse wheel scroll now works
• Added: 1541 disk breakpoints

v0.023 (2016/03/12)
• You can click inside memory map to scroll data dump view.
• Added: reading breakpoints file
• Added: command line options
• Added: Ctrl+G for goto address in memory dump & disassemble
• Added: in disassemble view: Ctrl+J make JMP to address shown by cursor

v0.022 (2016/03/05)

34

C64 Debugger v0.64.56 manual 5.8 Change log
.

• Traversing views in a main screen using TAB or Shift+TAB keys.
• Added: Show current raster beam position (Ctrl+E)
• Added: Snapshots menu. Store and restore full snapshots at any emulation cycle

v0.021 (2016/02/28)
• Fixed mapping of some keys on Windows (thx DKT & Isildur)
• ESC key returns, Alt+F4 closes app
• Added: Data dump view shows characters and sprites (Ctrl+K for colour mode)

v0.02 (2016/02/27)
• Loading PRG automatically starts if SYS basic command is detected
• Disassembled code can be scrolled using keyboard
• Added: Data dump screen with hex editing
• Added: Memory breakpoints

v0.01-test2 (2016/02/20)
• Added: Breakpoints screen
• Added: Settings screen

v0.01-test1 (2016/02/15)
• First internal release

35

	1 Preface
	1.1 Installation
	1.2 Beer Donation
	1.3 Facebook page

	2 Global keyboard shortcuts
	3 Debugger elements
	3.1 Disassembly view
	3.2 Data dump view
	3.3 Memory map view:
	3.4 Commodore 64 screen
	3.5 SID state view
	3.6 VIC state view
	3.7 VIC Display screen
	3.7.1 VIC Display screen keys

	3.8 VIC Editor screen
	3.8.1 VIC editor shortcuts

	3.9 Monitor screen
	3.10 Breakpoints
	3.10.1 Breakpoints screen
	3.10.2 Breakpoints screen keys
	3.10.3 Breakpoints file

	4 Invoking the debugger
	4.1 Command line options
	4.2 Code labels (symbols)
	4.3 Watches
	4.4 KickAss debug symbols
	4.4.1 C64Debugger - KickAss format

	4.5 JukeBox playlist and automated tests
	4.5.1 Global settings variables
	4.5.2 Action object variables

	5 Appendix
	5.1 Known bugs
	5.2 To do
	5.3 Thanks for testing
	5.4 Beer Donation
	5.5 Contact
	5.6 License
	5.7 Acknowledgements
	5.7.1 VICE License
	5.7.2 Commodore ROMs
	5.7.3 Libraries

	5.8 Change log

