'/_\/—/\\/—\‘

durexForth

Operators Manual

Contents

1 Introduction 4
1.1 Forth, the Language 4
1.1.1 Why Forth?o o 4

1.1.2 Comparing to other Forths 4

1.2 Appetizers 5
1.2.1 Graphics 5

1.2.2 Fractals 5

1.2.3 Music . . . oo e 5

2 Tutorial 6
2.1 Imterpreter. 6
2.2 Editoro e 6
2.3 Assembler 7
2.4 Console I/O Example 8
2.5 Avoiding Stack Crashes 8
2.5.1 Commenting oo 8

2.5.2 Stack Checks L o, 8

2.6 Configuring durexForth 9
2.6.1 Stripping Modules 9

2.6.2 Custom Start-Up 9

2.7 How to Learn More 9
2.7.1 Internet Resources 9

2.7.2 Other e 10

3 Editor 11
3.1 Key Presses e 11
3.1.1 Imserting Text., 11

3.1.2 Navigation 0 11

3.1.3 Saving & Quitting oL 12

3.1.4 Text Manipulation 12

4 Forth Words 13
4.1 Stack Manipulation 0oL 13
4.2 Utiliby o 14
4.3 Mathematics L 14
4.4 Signed Mathematics L. 15
4.5 Logic. e 15
4.6 Memory 16

4.7 Compiling L 16
4.8 Variables 17
4.8.1 Values 17

4.8.2 Variables 17

4.83 Arrays 17

4.9 Control Flow 17
410 Inputo 18
411 BEAIDG « o o oo e e e e 18
412 Strings oo 19
4.13 Vectored Execution L oo 19
4.14 Debuggingo 19
4.15 System State 19
416 Disk I/O . . . o oo 20
417 Kernel Calls e 20
Graphics 21
5.1 Turtle Graphics 21
5.2 High-Resolution Graphics 21
Music 23
6.1 Music Macro Language 23
6.2 Commands i i e 23

A Assembler Mnemonics 24
B Memory Map 25
C Word Anatomy 26
C.1 Imspectinga Word 26
C.2 Header 26
C.3 CodeField e 27
C4 DataField. e 27

Chapter 1

Introduction

1.1 Forth, the Language
1.1.1 Why Forth?

Forth is a different language. It is old, a little weird and makes you think
different.

What is cool about it? It is a very low-level and minimal language that has
a few rough edges. At the same time, it is easy to make it a very high-level and
domain-specific language, much like Lisp.

Compared to C64 Basic, Forth is more attractive in almost every way. It is a
lot more fast, memory effective and powerful.

Compared to C, specifically cc65, the story is a little different. It’s hard to
make a fair comparison. Theoretically Forth code can be very memory efficient,
and it’s possible to make Forth code that is leaner than C code. But it is also
true that cc65 code is generally faster than Forth code.

The main advantage of Forth is that the environment runs on the actual
machine. It would not be a lot of fun to use a C compiler that runs on a standard
C64. But with Forth, it’s possible to create an entire development suite with
editor, compiler and assembler that runs entirely on the C64.

Another advantage is that Forth has an interpreter. Compared to cross-
compiling, it is really nice to make small edits and tweaks without going through
the entire edit-compile-link-transfer-boot-run cycle.

For a Forth introduction, please refer to the excellent Starting Forth by Leo
Brodie. As a follow-up, I recommend Thinking Forth by the same author.

1.1.2 Comparing to other Forths

There are other Forths for c¢64, most notably Blazin’ Forth. Blazin’ Forth is
excellent, but durexForth has some advantages:

e Store your Forth sources as text files - no crazy block file system.
e durexForth is smaller.
e The editor is a vi clone.

e durexForth is open source (available at Google Code).

http://www.forth.com/starting-forth/
http://thinking-forth.sourceforge.net/
http://code.google.com/p/durexforth/

1.2 Appetizers

Some demonstration files are included as appetizers.

1.2.1 Graphics

The gfxdemo package demonstrates the high-resolution graphics, with some
examples adapted from the book ”Step-By-Step Programming C64 Graphics”
by Phil Cornes. Show the demos by entering:

s" gfxdemo" load gfxdemo

When a demo has finished drawing, press any key to continue.

1.2.2 Fractals

The fractal package demonstrates turtle graphics. You can load the package as
follows:

s" fractal" load

The fractals can then be shown by typing koch weedl bushl bush2. When
a fractal have finished drawing, press any key to continue.

1.2.3 Music

The mmldemo package demonstrates the MML music capabilities. To run:
s" mmldemo" load frere-jaques sarias-song

Chapter 2

Tutorial

2.1 Interpreter

Start up durexForth. If loaded successfully, it will greet you with a friendly ok.
You have landed in the interpreter!

Let’s warm it up a little. Enter 1 (followed by return). You have now put a
digit on the stack. This can be verified by the command .s, which will print out
the stack. Now enter . to pop the digit and print it to screen, followed by .s to
verify that the stack is empty.

Now some arithmetics. 1000 a * . will calculate $a x $1000 and print the
result on the screen. 6502 100 / 1- . will calculate and print ($6502/$100) — 1.

Let’s define a word bg! for setting the border color. ..

: bg! d020 c! ;

Now try entering 1 bg! to change the border color to white. Then, try
changing it back again with 0 bg!.

2.2 Editor

The editor (fully described in chapter 3) is convenient for editing larger pieces
of code. With it, you keep an entire source file loaded in RAM, and you can
recompile and test it easily.

Start the editor by typing vi. You will enter the pink editor screen.

To enter text, first press i to enter insert mode. This mode allows you to
insert text into the buffer. You can see that it’s active on the I that appears in
the lower left corner.

This is a good start for making a program. But first, let’s get rid of the "bg!”
word we created previously. Enter:

forget bg!

...and press < to leave insert mode. The line you entered forgets the bg!
word that you defined in the last section, and everything defined after it. Let’s
try out if it works.

First, quit the editor by pressing :q. You should now be back in the interpreter
screen. Verify that the word bg! still exists by entering 0 bg!, 1 bg! like you
did before. Then, jump back to the editor using the command vi. You should
return to your edit buffer with the lonely forget bg! line.

Now, compile and run the buffer by pressing F7. You will be thrown out
to the interpreter again. Entering bg! should now give you the error bg!? .
Success — we have forgotten the bg! word. Now, get back into the editor by
entering vi.

Beneath forget bg!, add the following lines:

: flash d020 c@ 1+ d020 c! recurse ;
flash

flash will cycle the border color infinitely. Before trying it out, go up and
change forget bg! to forget flash. This makes sure you won’t run out of
RAM, no matter how many times you recompile the program. Now press F7 to
compile and run. If everything is entered right, you will be facing a wonderful
color cycle.

To get back into the editor, press Restore key. Let’s see how we can factor
the program to get something more Forth’y:

forget bg

: bg d020 ; # border color addr

: inc dup c@ 1+ swap c! ; (addr —-)
: flash bg inc recurse ;

flash

(Note: Parentheses are used for multi-line comments or describing arguments
and return values. # is used for single-line comments.)

Of course, it is a matter of taste which version you prefer. Press F7 to see if
the new version runs faster or slower.

2.3 Assembler

If you need to flash as fast as possible, use the assembler:

:asm flash

here # push current addr
d020 inc,

jmp, # jump to pushed addr
;asm

flash

:asm and ;asm define a code word, just like : and ; define Forth words.
Within a code word, you can use assembler mnemonics.

Note: As the x register contains the durexForth stack depth, it is important
that it remains unchanged at the end of the code word.

2.4 Console I/O Example

This piece of code reads from keyboard and sends back the chars to screen:

: foo key emit recurse ;
foo

2.5 Avoiding Stack Crashes

durexForth should be one of the fastest and leanest Forths for the C64. To
achieve this, there are not too many niceties for beginners. For example, compiled
code has no checks for stack overflow and underflow. This means that the system
may crash if you do too many pops or pushes. This is not much of a problem
for an experienced Forth programmer, but until you reach that stage, handle
the stack with care.

2.5.1 Commenting

One helpful technique to avoid stack crashes is to add comments about stack
usage. In this example, we imagine a graphics word ”drawbox” that draws a
black box. (color --) indicates that it takes one argument on stack, and
on exit it should leave nothing on the stack. The comments inside the word
indicate what the stack looks like after the line has executed.

: drawbox (color --)

10 begin dup 20 < while # color x
10 begin dup 20 < while # color x y
2dup # color x y x y

4 pick # color x y x y color

blkcol # color x y

1+ repeat drop # color x

1+ repeat 2drop ;

Once the word is working, it may be nice to again remove the # comments
as they are no longer very interesting to read.

2.5.2 Stack Checks

Another useful technique during development is to check at the end of your
main loop that the stack depth is what you expect it to. This will catch stack
underflows and overflows.

: mainloop begin
do stuff here...
depth if ." err"
again ;

exit then

2.6 Configuring durexForth
2.6.1 Stripping Modules

By default, durexForth boots up with all modules pre-compiled in RAM:
doloop Do-loop words.

debug Words for debugging.

asm The assembler.

vi The text editor.

Is List disk contents.

gfx Graphics module.

To reduce RAM usage, you may make a stripped-down version of durexForth.
Do this by following these steps:

1. Issue forget modules to forget all modules.
2. Optionally re-add the modules marker with header modules.

3. One by one, load the modules you want included with your new Forth.
(E.g. s" debug" load)

4. Save the new system with e.g. s" acmeforth" save-forth.

2.6.2 Custom Start-Up

You may launch a word automatically at start-up by setting the variable start
to the execution token of the word. Example: > megademo start !
To save the new configuration to disk, use save-forth.

2.7 How to Learn More

2.7.1 Internet Resources
Books and Papers
e Starting Forth

e Thinking Forth

Moving Forth: a series on writing Forth kernels

Blazin’ Forth — An inside look at the Blazin’ Forth compiler

The Evolution of FORTH, an unusual language

e A Beginner’s Guide to Forth

http://www.forth.com/starting-forth/
http://thinking-forth.sourceforge.net/
http://www.bradrodriguez.com/papers/
http://www.csbruce.com/~csbruce/cbm/transactor/v7/i5/p058.html
http://www.drdobbs.com/architecture-and-design/the-evolution-of-forth-an-unusual-langua/228700557
http://galileo.phys.virginia.edu/classes/551.jvn.fall01/primer.htm

Other Forths

e colorForth
¢ JONESFORTH

e colorForthRay.info — How_to: with Ray St. Marie

2.7.2 Other

e durexForth source code

10

http://www.colorforth.com/cf.html
http://www.annexia.org/forth
http://colorforthray.info/
http://code.google.com/p/durexforth/

Chapter 3

Editor

The editor is a vi clone. Launch it by entering s" foo" vi in the interpreter
(foo being the file you want to edit). You may also enter vi with no parameters
on stack - in that case, it will create a text file named ”untitled”. For more info
about vi style editing, see the Vim web site.

The position of the editor buffer is controlled by the variable bufstart. The
default address is $6000.

3.1 Key Presses

3.1.1 Inserting Text

Following commands enter insert mode. Insert mode allows you to insert text.
It can be exited by pressing <.

i Insert text.

a Append text.

o Open new line after cursor line.
O Open new line on cursor line.

cw Change word.

3.1.2 Navigation

hjkl Cursor left, down, up, right.
Cursor Keys ...also work fine.
U Half page up.

D Half page down.

b Go to previous word.

w Go to next word.

0 Go to line start.

11

http://www.vim.org

$ Go to line end.
g Go to start of file.
G Go to end of file.

3.1.3 Saving & Quitting

After quitting, the editor can be re-opened with Forth command vi, and it will
resume operations with the edit buffer preserved.

ZZ Save and exit.

:q Exit.

:w Save. (Must be followed by return.)
:wl!filename Save as.

F7 Compile and run editor contents. Press Restore key to return to editor.

3.1.4 Text Manipulation

r Replace character under cursor.
x Delete character.

X Backspace-delete character.

dw Delete word.

dd Cut line.

vy Yank (copy) line.

p Paste line below cursor position.
P Paste line on cursor position.

J Join lines.

12

Chapter 4

Forth Words

4.1 Stack Manipulation

drop (a —) Drop top of stack.

dup (a —a a) Duplicate top of stack.

swap (a b —b a) Swap top stack elements.

over (ab—ab a) Make a copy of the second item and push it on top.
rot (a b c— b ca) Rotate the third item to the top.

-rot (abc—cab) rotrot

2drop (a b —) Drop two topmost stack elements.

2dup (a b —a b a b) Duplicate two topmost stack elements.
?dup (a—a a?) Dup a if a differs from 0.

nip (a b — b) swap drop

tuck (ab—bab) dup-rot

pick ((zy ... T To U — Ty ... T To Xy) Pick from stack element with depth
u to top of stack.

>r (a—) Move value from top of parameter stack to top of return stack.
r> (—a) Move value from top of return stack to top of parameter stack.
r@ (—a) Copy value from top of return stack to top of parameter stack.

depth (— n) n is the number of single-cell values contained in the data stack
before n was placed on the stack.

sp0 (— addr) The bottom address of the LSB section of the parameter stack.

spl (— addr) The bottom address of the MSB section of the parameter stack.

13

4.2 Utility

. (a—) Print top value of stack.

.s See stack contents.

emit (a —) Print top byte of stack as a PETSCII character.
Comment to end of line.

(' Start multi-line comment.

) End multi-line comment.

bl Space character (value).

space Prints a space (bl emit).

4.3 Mathematics

These words assume that the lowest number is 0 and highest is FFFF.

1+ (a — b) Increase top of stack value by 1.

1- (a — b) Decrease top of stack value by 1.

24 (a— b) Increase top of stack value by 2.

2* ((a — b) Fast multiply top of stack value by 2.
2/ (a— b) Fast divide top of stack value by 2.
100/ (a — b) Divides top of stack value by $100.
4! (n a—) Add n to memory address a.

4+ (ab—-c) Add aand b.

- (ab—c) Subtract b from a.

* (ab—c) Multiply a with b.

d* (a b — msw Isw) 32-bit multiply a with b.

um/mod (msw lsw d — r q) Divide 32-bit number by d, giving remainder
r and quotient q.

/mod (ab —r q) Divide a with b, giving remainder r and quotient q.
/ (ab—q) Divide a with b.
mod (a b —r) Remainder of a divided by b.

*/ (abc—q) Multiply a with b, then divide by ¢, using a 32-bit intermedi-
ary.

*/mod (abc—rq) Like */, but also keeping remainder r.

14

< (ab—-c) Isaless than b?

> (ab—c) Is a greater than b?

>= (a b —c) Is a greater than or equal to b?
<= (ab —c) Is aless than or equal to b?
Ishift (a b — ¢) Binary shift a left by b.
rshift (a b — ¢) Binary shift a right by b.
base (value) Numerical base.

decimal Sets base to 10.

hex Sets base to 16.

4.4 Signed Mathematics

These words treat numbers like they are signed, meaning that numbers 8000 -
FFFF are negative and 0 - 7FFF are positive. (E.g., FFFF means -1.)

0< (a— b)) Is a negative?

negate (a — b) Negates a.

abs (a— b) Gives absolute value of a.

s< (ab—c) Isaless than b? (Signed comparison.)

s> (ab—c) Isa greater than b? (Signed comparison.)

4.5 Logic

0= (a — flag) Is a equal to zero?

0<> (a— flag) Is a not equal to 07

= (ab —flag) Is a equal to b?

<> (‘a b —flag) Does a differ from b?
and (a b — ¢) Binary and.

or (ab — c) Binary or.

xor (a b — ¢) Binary exclusive or.

invert (a — b) Flip all bits of a.

15

4.6 Memory

! (value address —) Store 16-bit value at address.

@ (address — value) Fetch 16-bit value from address.

c! (value address —) Store 8-bit value at address.

c@ (address — value) Fetch 8-bit value from address.

fill (byte addr len —) Fill range [addr, len + addr) with byte value.

cmove (src dst len —) Copy len bytes from src to dst. The move begins
with the contents of src and proceeds towards high memory.

cmove> (src dst len —) Byte-to-byte copy like cmove, but starts with ad-
dress src + len - 1 and proceeds towards src.

forget xxx Forget Forth word xxx and everything defined after it.

4.7 Compiling

: Start compiling Forth word at here position.

s End compiling.

, (n —) Write word on stack to here position and increase here by 2.
¢, (n —) Write byte on stack to here position and increase here by 1.
literal (n —) Compile a value from the stack as a literal value.

[char] ¢ Compile character c as a literal value.

[(—) Leave compile mode. Execute the following words immediately instead
of compiling them.

] (=) Return to compile mode.

immed Mark the word being compiled as immediate (i.e. inside colon definitions,
it will be executed immediately instead of compiled).

[’] xxx Compile the execution token of word xxx as a literal value instead of
executing it. (This does not work if xxx is an immediate words.)

[compile] xxx Compile the execution token of immediate word xxx instead of
executing it.

header xxx Create a dictionary header with name xxx.

create xxx/does> Create a word creating word xxx with custom behavior
specified after does;. For further description, see ”Starting Forth.”

16

4.8 Variables
4.8.1 Values

Values are fast to read, slow to write. Use values for variables that are rarely
changed.

1 value foo Create value foo and set it to 1.
foo Fetch value of foo.

0 to foo Set foo to 0.

4.8.2 Variables

Variables are faster to write to than values.

variable bar Define variable bar.
bar @ Fetch value of bar.

1 bar ! Set bar to 1.

4.8.3 Arrays
10 allot value foo Allocate 10 bytes to array foo.

1 foo 2 + ! Store 1 in position 2 of foo.

foo dump See contents of foo.

It is also possible to build arrays using create. The initialization is easier,
but access is slightly different:

create 2powtable
1c,2c,4c, 8c,

10 ¢, 20 ¢, 40 c, 80 c,
: 2pow (n -- 2x*xn) [’] 2powtable + c@ ;

4.9 Control Flow

Control functions only work in compile mode, not in interpreter.

if ... then condition IF true-part THEN rest
if ... else ... then condition IF true-part ELSE false-part THEN rest

do ... loop Start a loop with index i and limit. Example:
: printOto7 8 0 do i . loop ;

do ... +loop Start a loop with a custom increment. Example:

17

(prints odd numbers from 1 to n)
: printoddnumbers (n --) 1 do i . 2 +loop ;

i, j Variables are to be used inside do .. loop constructs. i gives inner loop
index, j gives outer loop index.
begin ... again Infinite loop.

begin ... until BEGIN loop-part condition UNTIL.

Loop until condition is true.

begin ... while ... repeat BEGIN condition WHILE loop-part REPEAT.

Repeat loop-part while condition is true.
exit Exit function.
recurse Jump to the start of the word being compiled.

case ... endcase, of ... endof Switch statements.

: tellno (n ——)
case

1 of ." one" endof

2 of ." two" endof

3 of ." three" endof

." other"
endcase
4.10 Input

key (— n) Reads a character from current input (can be keyboard, disk or
RAM).

word (— addr) Reads a word from input and put the string address on the
stack.

interpret (— value) Interprets a word from input and puts it on the stack.

compile-ram (value) Makes DurexForth interpret from RAM. E.g. c000
compile-ram ! will make DurexForth interpret from c000. The string to
interpret must be terminated with the bytes 20 00.

4.11 Editing

vi (—) Enter editor. If a buffer is already open, editor will pick up where it
left. Otherwise, an untitled buffer will be created.

vi (filenameptr filenamelen —) Edit a file. Try s" 1s" vi.

18

4.12 Strings

.(Print a string. Example: . (foo)
.” Compile-time version of 7. (”. Example: : foo ." bar" ;

99

s” (— strptr strlen)

Define a string. Example: s" foo".

tell (strptr strlen —)

Prints a string.

4.13 Vectored Execution

> xxx (— addr) Find execution token of word xxx.

lit xxx (— addr) Equal to ’ but used for clarity. Use > 1it , , to compile
the (run-time) value on top of stack.

execute (xt —) Execute the execution token on top of stack.
loc xxx (— addr) Run-time only: Get adress of word xxx.

>cfa (addr — xt) Get execution token (a.k.a. code field adress) of word at
adress addr.

Example: ° words execute equals loc words >cfa execute equals
words.

4.14 Debugging

Debugging words are loaded with s" debug" load.

words List all defined words.

size size foo prints size of foo.

dump (n —) Memory dump starting at address n.
n Continue memory dump where last one stopped.

see word Decompile Forth word and print to screen. Try see see.

4.15 System State

latest (variable) Position of latest defined word.

here (variable) Write position of the Forth compiler (usually first unused byte
of memory). Many C64 assemblers refer to this as program counter or *.

19

4.16 Disk I/0

load (filenameptr filenamelength —) Load and execute/compile file.
loadb (filenameptr filenamelength dst —) Load binary block to dst.
saveb (start end filenameptr filenamelength —) Save binary block.

scratch (filenameptr filenamelength —) Scratch file.

4.17 Kernel Calls

Safe kernel calls may be done from Forth words using jsr (addr —). The helper
variables ar, xr, yr and sr can be used to set arguments and get results through
the a, x, y and status registers.

Example: key 0 ar ! ££fd2 jsr prints O on screen.

20

Chapter 5
Graphics

As of durexForth v1.2, high-resolution graphics support is included.

5.1 Turtle Graphics

Turtle graphics are mostly known from LOGO, a 1970s programming language.
It enables control of a turtle that can move and turn while holding a pen. The
turtle graphics library is loaded with s" turtle" load.

init (—) Initializes turtle graphics.

forward (px —) Moves the turtle px pixels forward.
back (px —) Moves the turtle px pixels back.

left (deg —) Rotates the turtle deg degrees left.
right (deg —) Rotates the turtle deg degrees right.
penup (—) Pen up (disables drawing).

pendown (—) Pen down (enables drawing).

5.2 High-Resolution Graphics

The high-resolution graphics library is loaded with s" gfx" load. It is in-
spired by ”Step-by-Step Programming Commodore 64: Graphics Book 3.” Some
demonstrations can be found in gfxdemo.

hires (—) Enters the high-resolution drawing mode.
lores (—) Switches back to low-resolution text mode.

clrcol (colors —) Clears the high-resolution display using colors. Colors is
a byte value with foreground color in high nibble, background color in low
nibble. E.g. 15 clrcol clears the screen with green background, white
foreground.

blkcol (col row colors —) Changes colors of the 8x8 block at given position.

21

plot (x y —) Sets the pixel at x, y.

peek (x y — p) Gets the pixel at x, y.

line (x y —) Draws a line to x, y.

circle (x y r —) Draws a circle with radius r around x, y.

erase (mode —) Changes blit method for line drawing. 1 erase uses xor for
line drawing, O erase switches back to or.

paint (x y —) Paints the area at x, y.

text (column row str strlen —) Draws a text string at the given position.
E.g. 10 8 s" hallo" text draws the message "hallo” at column 16, row
8.

drawchar (column row char —) Draws a custom character at given column
and row.

defchar Defines an 8x8 character to use with the drawchar word. Example:

defchar sqr
00000000
00000000
00111100
00111100
00111100
00111100
00000000
00000000

2 2 sqr drawchar

...draws a square at column 2, row 2.

22

Chapter 6

Music

6.1 Music Macro Language

Music Macro Language (MML) has been used since the 1970s to sequence music
on computer and video game systems. MML support is included in durexForth,
starting with version 1.3. The package is loaded with s" mml" load". Two
demonstration songs can be found in the mmldemo package.

MML songs are played using the Forth word play-mml which takes three
strings, one MML melody for each of the three SID voices. An example song is
as follows:

: frere-jaques
s" o3l4fgaffgafab->c&c<ab->c&cl8cdc<b-l4af>18cdc<b-l4affcf&ffcf&f"
s" rlo3l4fgaffgafab->c&c<ab->c&cl8cdc<b-1l4af>18cdc<b-l4affcf&ffcf&f"

s" " play-mml ;

6.2 Commands

cdefgab The letters c to b represent musical notes. Sharp notes are produced
by appending a +, flat notes are produced by appending a -. The length
of a note is specified by appending a number representing its length as a
fraction of a whole note — for example, c8 represents a C eight note, and
£+2 an F# half note. Valid note lengths are 1, 2, 3, 4, 6, 8, 16, 24 and 32.
Appending a . increases the duration of the note by half of its value.

o Followed by a number, o selects the octave the instrument will play in.

r A rest. The length of the rest is specified in the same manner as the length of
a note.

<,> Used to step down or up one octave.

1 Followed by a number, specifies the default length used by notes or rests which
do not explicitly specify one.

& Ties two notes together.

23

Appendix A

Assembler Mnemonics

adc,# bvs, eor, (x) lsr,a sbc,#
adc, clc, eor, (y) lsr, sbc,
adc,x cld, 1lsr,x sbc,x
adc,y cli, inc, sbc,y
adc, (x) clv, inc,x nop, sbc, (x)
adc, (y) sbe, (y)

cmp, # inx, ora,#
and,# cmp, iny, ora, sec,
and, cmp, X ora,Xx sed,
and,x cmp,y jmp, ora,y sei,
and,y cmp, (x) (jmp) , ora, (x)
and, (x) cmp, (y) ora, (y) sta,
and, (y) jsr, sta,x

cpx,# pha, sta,y
asl,a CpX, 1lda,# php, sta, (x)
asl, lda, pla, sta, (y)
asl,x cpy,# lda,x plp,

cpy, lda,y stx,
bcc, 1lda, (x) rol,a stx,y
bcs, dec, lda, (y) rol,
beq, dec,x rol,x sty,

1dx,# sty,x

bit, dex, 1dx, ror,a

dey, ldx,y ror, tax,
bmi, ror,x tay,
bne, eor,# ldy,# tsx,
bpl, eor, ldy, rti, txa,
brk, eor,x ldy,x rts, txs,
bvc, eor,y tya,

24

Appendix B

Memory Map

... - 887 Parameter stack (grows downwards). Placing parameter stack here
gives good performance, but it also means that BASIC Kernal cannot be
used without extra precautions.

$8b - $8c zptmp (temporary storage for low-level Forth words).
$8d - $8e zptmp2 (temporary storage for low-level Forth words).
$9e - $9f zptmp3 (temporary storage for low-level Forth words).

$fb - $fc Instruction pointer.
$801 - here Forth Kernel followed by dictionary.

bufstart - eof Editor space.

25

Appendix C

Word Anatomy

C.1 Inspecting a Word
Let us define a word and see what it gets compiled to.
: bg d020 c! ;

When the word is defined, you can get its start address by loc bg, and the
contents of bg can be dumped using loc bg dump. Try it, and you will get
output like the following:

48e7 a0 48 02 42 47 20 86 08 .h.bg ..
48ef 9c 10 20 dO ae Oa ce 10
48f7 f£f ff ff £f ff £f £f ££f
49ff

Here, we can see that the "bg” word is 16 bytes long and starts at address
$48e7. It contains three parts: Header, code field and data field.

C.2 Header

48e7 a0 48 02 42 47 20 86 08 .h.bg ..
48ef 9c 10 20 dO ae Oa ce 10

The first two bytes contain a back-pointer to the previous word, starting at
$48a0. The next byte, 702", is the length of ”"bg” name string. After that, the
string ”bg” follows. (42 ="b’, 47 =g’)

The name length byte is also used to store special attributes of the word. Bit
7 is 7immediate” flag, which means that the word should execute immediately
instead of being compiled into word definitions. (”(” is such an example of an
immediate word that does not get compiled.) Bit 6 is “hidden” flag, which makes
a word unfindable. Since bg is neither immediate nor hidden, bits 7-6 are both
clear.

26

C.3 Code Field

48e7 a0 48 02 42 47 20 86 08 .h.bg ..
48ef 9c 10 20 dO ae Oa ce 10

The code field contains the 6502 instruction ”jsr $886”. $886 is the place of
the DOCOL word, which is responsible for pushing the Forth instruction pointer
(IP) to the return stack, and then redirecting IP to the data field of bg.

C.4 Data Field

48e7 a0 48 02 42 47 20 86 08 .h.bg ..
48ef 9c 10 20 dO ae Oa ce 10

The data field contains a list of pointers to code fields to be executed by
DurexForth. The first two bytes contain $109¢, the code field adress (CFA) of
the 1it word. 1it is responsible for pushing the two following bytes ($d020) to
the parameter stack. After that, we find $aae, the CFA of c!. Finally, $10ce is
the CFA of exit, which restores the instruction pointer that DOCOL previously
pushed to the return stack.

27

	Introduction
	Forth, the Language
	Why Forth?
	Comparing to other Forths

	Appetizers
	Graphics
	Fractals
	Music

	Tutorial
	Interpreter
	Editor
	Assembler
	Console I/O Example
	Avoiding Stack Crashes
	Commenting
	Stack Checks

	Configuring durexForth
	Stripping Modules
	Custom Start-Up

	How to Learn More
	Internet Resources
	Other

	Editor
	Key Presses
	Inserting Text
	Navigation
	Saving & Quitting
	Text Manipulation

	Forth Words
	Stack Manipulation
	Utility
	Mathematics
	Signed Mathematics
	Logic
	Memory
	Compiling
	Variables
	Values
	Variables
	Arrays

	Control Flow
	Input
	Editing
	Strings
	Vectored Execution
	Debugging
	System State
	Disk I/O
	Kernel Calls

	Graphics
	Turtle Graphics
	High-Resolution Graphics

	Music
	Music Macro Language
	Commands

	Assembler Mnemonics
	Memory Map
	Word Anatomy
	Inspecting a Word
	Header
	Code Field
	Data Field

